Skip to main content
Log in

The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In the present work, the unified framework for the computational treatment of rigid bodies and nonlinear beams developed by Betsch and Steinmann (Multibody Syst. Dyn. 8, 367–391, 2002) is extended to the realm of nonlinear shells. In particular, a specific constrained formulation of shells is proposed which leads to the semi-discrete equations of motion characterized by a set of differential-algebraic equations (DAEs). The DAEs provide a uniform description for rigid bodies, semi-discrete beams and shells and, consequently, flexible multibody systems. The constraints may be divided into two classes: (i) internal constraints which are intimately connected with the assumption of rigidity of the bodies, and (ii) external constraints related to the presence of joints in a multibody framework. The present approach thus circumvents the use of rotational variables throughout the whole time discretization, facilitating the design of energy–momentum methods for flexible multibody dynamics. After the discretization has been completed a size-reduction of the discrete system is performed by eliminating the constraint forces. Numerical examples dealing with a spatial slider-crank mechanism and with intersecting shells illustrate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angeles, J., Lee, S.: The modeling of holonomic mechanical systems using a natural orthogonal complement. Trans. Can. Soc. Mech. Eng. 13(4), 81–89 (1989)

    Google Scholar 

  2. Antmann, S.S.: Nonlinear Problems in Elasticity. Springer, Berlin (1995)

    Google Scholar 

  3. Bauchau, O.A., Choi, J.-Y.: On the modeling of shells in multibody dynamics. Multibody Dyn. Syst. 459–489 (2002)

  4. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  5. Betsch, P.: A unified approach to the energy consistent numerical integration of nonholonomic mechanical systems and flexible multibody dynamics. GAMM Mitt. 27(1), 66–87 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints. Comput. Methods Appl. Mech. Eng. 194(50–52), 5159–5190 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int. J. Numer. Methods Eng. 67(4), 499–552 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191, 467–488 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Betsch, P., Steinmann, P.: Conserving properties of a time FE method. Part III: Mechanical systems with holonomic constraints. Int. J. Numer. Methods Eng. 53, 2271–2304 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Betsch, P., Steinmann, P.: A DAE approach to flexible multibody dynamics. Multibody Syst. Dyn. 8, 367–391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bottasso, C.L., Borri, M., Trainelli, L.: Integration of elastic multibody systems by invariant conserving/dissipating algorithms. II. Numerical schemes and applications. Comput. Methods Appl. Mech. Eng. 190, 3701–3733 (2001)

    Article  MathSciNet  Google Scholar 

  13. Brank, B., Korelc, J., Ibrahimbegović, A.: Dynamics and time-stepping schemes for elastic shells undergoing finite rotations. Comput. Struct. 81, 1193–1210 (2003)

    Article  Google Scholar 

  14. Büchter, N., Ramm, E.: Shell theory versus degeneration—a comparison in large rotation finite element analysis. Int. J. Numer. Methods Eng. 34, 39–59 (1992)

    Article  MATH  Google Scholar 

  15. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures. Vol. I: Essentials. Wiley, New York (1991)

    Google Scholar 

  16. Crisfield, M.A., Jelenić, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. Roy. Soc. Lond. A 455, 1125–1147 (1999)

    Article  MATH  Google Scholar 

  17. Géradin, M., Cardona, A.: Flexible Multibody Dynamics. Wiley, New York (2001)

    Google Scholar 

  18. Goicolea, J.M., Orden, J.C.: Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy–momentum schemes. Comput. Methods Appl. Mech. Eng. 188, 789–804 (2000)

    Article  MATH  Google Scholar 

  19. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gonzalez, O.: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration. Phys. D 132, 165–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Göttlicher, B.: Effiziente Finite-Element-Modellierung gekoppeler starrer und flexibler Strukturbereiche bei transienten Einwirkungen. PhD thesis, Universität Karlsruhe (2002)

  22. Hughes, T.J.R.: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover, New York (2000)

    Google Scholar 

  23. Hughes, T.J.R., Liu, W.K.: Nonlinear finite element analysis of shells. Part I: Three-dimensional shells. Comput. Methods Appl. Mech. Eng. 26, 331–362 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ibrahimbegović, A., Mamouri, S.: Finite rotations in dynamics of beams and implicit time-stepping schemes. Int. J. Numer. Methods Eng. 41, 781–814 (1998)

    Article  MATH  Google Scholar 

  25. Ibrahimbegović, A., Mamouri, S., Taylor, R.L., Chen, A.J.: Finite element method in dynamics of flexible multibody systems: modeling of holonomic constraints and energy conserving integration schemes. Multibody Syst. Dyn. 4, 195–223 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jelenić, G., Crisfield, M.A.: Interpolation of rotational variables in non-linear dynamics of 3d beams. Int. J. Numer. Methods. Eng. 43, 1193–1222 (1998)

    Article  MATH  Google Scholar 

  27. Jelenić, G., Crisfield, M.A.: Dynamic analysis of 3D beams with joints in presence of large rotations. Comput. Methods Appl. Mech. Eng. 190, 4195–4230 (2001)

    Article  MATH  Google Scholar 

  28. Kuhl, D., Ramm, E.: Generalized energy–momentum method for non-linear adaptive shell dynamics. Comput. Methods Appl. Mech. Eng. 178, 343–366 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Leyendecker, S., Betsch, P., Steinmann, P.: Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches. Comput. Mech. 33, 174–185 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Leyendecker, S., Betsch, P., Steinmann, P.: Objective energy–momentum conserving integration for the constrained dynamics of geometrically exact beams. Comput. Methods Appl. Mech. Eng. 195, 2313–2333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems. Texts in Applied Mathematics, vol. 17. Springer, Berlin (1994)

    MATH  Google Scholar 

  32. Munoz, J., Jelenić, G., Crisfield, M.A.: Master-slave approach for the modeling of joints with dependent degrees of freedom in flexible mechanisms. Commun. Numer. Methods Eng. 19, 689–702 (2003)

    Article  MATH  Google Scholar 

  33. Puso, M.A.: An energy and momentum conserving method for rigid-flexible body dynamics. Int. J. Numer. Methods Eng. 53, 1393–1414 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Romero, I., Armero, F.: Numerical integration of the stiff dynamics of geometrically exact shells: an energy-dissipative momentum-conserving scheme. Int. J. Numer. Methods Eng. 54, 1043–1086 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum scheme in dynamics. Int. J. Numer. Methods Eng. 54, 1683–1716 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sansour, J., Wagner, W., Wriggers, P.: An energy–momentum integration scheme and enhanced strain finite elements for the non-linear dynamics of shells. Nonlinear Mech. 37, 951–966 (2002)

    Article  MATH  Google Scholar 

  37. Simo, J.C.: On a stress resultant geometrically exact shell model. Part VII: Shell intersections with 5/6-DOF finite element formulations. Comput. Methods Appl. Mech. Eng. 108, 319–339 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  38. Simo, J.C., Rifai, M.S., Fox, D.D.: On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for non-linear dynamics. Int. J. Numer. Methods Eng. 34, 117–164 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Simo, J.C., Tarnow, N.: A new energy and momentum conserving algorithm for the non-linear dynamics of shells. Int. J. Numer. Methods Eng. 37, 2527–2549 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. Taylor, R.L.: Finite element analysis of rigid-flexible systems. In: Ambrósio, J.A.C., Kleiber, M. (eds.) Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, vol. 179, pp. 62–84. IOS, Amsterdam (2001)

    Google Scholar 

  41. Warburton, G.B.: The Dynamical Behaviour of Structures. Pergamon, Elmsford (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Leyendecker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyendecker, S., Betsch, P. & Steinmann, P. The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. Multibody Syst Dyn 19, 45–72 (2008). https://doi.org/10.1007/s11044-007-9056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9056-4

Keywords

Navigation