Skip to main content
Log in

Dynamics of a two-module vibration-driven system moving along a rough horizontal plane

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 14 July 2009

Abstract

A rectilinear motion of a system of two bodies connected by a spring on a rough horizontal plane is studied. The motion of the system is excited by two identical unbalanced rotors based on the respective bodies. Major attention is given to the steady-state motion. A nearly-resonant excitation mode, when the angular velocities of the rotor are close to the natural frequency of the system, is considered. A set of algebraic equations for determining an approximate value of the average steady-state velocity of the entire system is obtained for the case of small friction. It is shown that control of the steady-state motion can be provided by changing the phase shift between the rotations of the rotors and the sign of the resonant detuning measured by the difference between the angular velocity of the rotors and the natural frequency of the system. By varying the phase shift one can control the magnitude of the average velocity, and varying the detuning enables one to change the direction of the motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernousko, F.L.: The motion of a multilink system along a horizontal plane. J. Appl. Math. Mech. 64(1), 5–15 (2000)

    Article  MathSciNet  Google Scholar 

  2. Chernousko, F.L.: The wave-like motion of a multilink system on a horizontal plane. J. Appl. Math. Mech. 64(4), 497–508 (2000)

    Article  MathSciNet  Google Scholar 

  3. Chernousko, F.L.: The motion of a flat linkage over a horizontal plane. Dokl. Phys. 45(1), 42–45 (2000)

    Article  MathSciNet  Google Scholar 

  4. Chernousko, F.L.: The motion of a three-link system along a plane. J. Appl. Math. Mech. 65(1), 13–18 (2001)

    Article  MathSciNet  Google Scholar 

  5. Chernousko, F.L.: Controllable motions of a two-link mechanism along a horizontal plane. J. Appl. Math. Mech. 65(4), 665–677 (2001)

    Article  MathSciNet  Google Scholar 

  6. Smyshlyaev, A.S., Chernousko, F.L.: Optimization of the motion of multilink robots on a horizontal plane. J. Comput. Syst. Sci. Int. 40(2), 340–348 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Chernousko, F.L.: Snake-like locomotions of multilink mechanisms. J. Vib. Control 9(1–2), 237–256 (2003)

    MathSciNet  Google Scholar 

  8. Sobolev, N.A., Sorokin, K.S.: Experimental investigation of snakelike motions of a three-link mechanism. J. Comput. Syst. Sci. Int. 45(5), 841–849 (2006)

    Article  Google Scholar 

  9. Saito, M., Fukaya, M., Iwasaki, T.: Modeling, analysis, and synthesis of serpentine locomotion with a multilink robotic snake. IEEE Control Syst. Mag. 22(1), 64–81 (2002)

    Article  Google Scholar 

  10. Figurina, T.Yu.: Quasi-static motions of a two-member linkage along a horizontal plane. Mech. Solids 38(1), 24–32 (2003)

    Google Scholar 

  11. Figurina, T.Yu.: Controlled quasistatic motions of a two-link robot on a horizontal plane. J. Comput. Syst. Sci. Int. 43(3), 481–496 (2004)

    Google Scholar 

  12. Figurina, T.Yu.: Quasi-static motion of a two-link system along a horizontal plane. Multibody Syst. Dyn. 11, 251–272 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Figurina, T.Yu.: Controlled slow motions of a three-link robot on a horizontal plane. J. Comput. Syst. Sci. Int. 44(3), 473–480 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Chernousko, F.L.: The optimum rectilinear motion of a two-mass system. J. Appl. Math. Mech. 66(1), 1–7 (2002)

    Article  MathSciNet  Google Scholar 

  15. Li, H., Furuta, K., Chernousko, F.L.: Motion generation of the capsubot using internal force and static friction. In: Proc. 45th. IEEE Conf. on Decision and Control, San Diego, CA, USA, pp. 6575–6580 (2006)

  16. Vartholomeos, P., Papadopoulos, E.: Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators. Trans. ASME J. Dyn. Syst. Meas. Control 128, 122–133 (2006)

    Article  Google Scholar 

  17. Breguet, J.-M., Clavel, R.: Stick and slip actuators: design, control, performances and applications. In: Proc. Int. Symp. on Micromechatronics and Human Science, Nagoya, Japan, pp. 89–95 (1998)

  18. Schmoeckel, F., Worn, H.: Remotely controllable mobile microrobots acting as nano-positioners and intelligent tweezers in scanning electron microscopes (SEMs). In: Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 3903–3913 (2001)

  19. Chernousko, F.L.: On the motion of a body containing a movable internal mass. Dokl. Phys. 50(11), 593–597 (2005)

    Article  Google Scholar 

  20. Chernousko, F.L.: Analysis and optimization of the motion of a body controlled by means of a movable mass. J. Appl. Math. Mech. 70(6), 819–842 (2006)

    Article  MathSciNet  Google Scholar 

  21. Chernousko, F.L.: Optimal periodic motions of a two-mass system in a resistive medium. J. Appl. Math. Mech. 72(2), 202–215 (2008)

    Article  MathSciNet  Google Scholar 

  22. Chernousko, F.L.: On the optimal motion of a body with an internal mass in a resistive medium. J. Vib. Control 14(1–2), 197–208 (2008)

    Article  MathSciNet  Google Scholar 

  23. Figurina, T.Yu.: Optimal control of the motion of a two-body system along a straight line. J. Comput. Syst. Sci. Int. 46(2), 227–233 (2007)

    Article  MathSciNet  Google Scholar 

  24. Bolotnik, N.N., Zeidis, I., Zimmermann, K., Yatsun, S.F.: Dynamics of controlled motion of vibration-driven systems. J. Comput. Syst. Sci. Int. 45(5), 831–840 (2006)

    Article  Google Scholar 

  25. Sobolev, N.A., Sorokin, K.S.: Experimental investigation of a model of a vibration-driven robot with rotating masses. J. Comput. Syst. Sci. Int. 46(5), 826–835 (2007)

    Article  Google Scholar 

  26. Bolotnik, N.N., Figurina, T.Yu.: Optimal control of the rectilinear motion of a rigid body on a rough plane by means of the motion of two internal masses. J. Appl. Math. Mech. 72(2), 126–135 (2008)

    Article  MathSciNet  Google Scholar 

  27. Zimmermann, K., Zeidis, I., Steigenberger, J., Huang, J.: An approach to the modelling of worm-like motion systems with a finite number of degrees of freedom. First Steps in Technical Realization. In: Proc. of the 4th International Conference of Climbing and Walking Robots, Karlsruhe, Germany, pp. 561–568 (2001)

  28. Zimmermann, K., Zeidis, I., Pivovarov, M., Abaza, K.: Forced nonlinear oscillator with nonsymmetric dry friction. Arch. Appl. Mech. 77, 353–362 (2007)

    Article  MATH  Google Scholar 

  29. Zimmermann, K., Zeidis, I., Steigenberger, J.: Mathematical model of worm-like motion systems with finite and infinite numbers of degrees of freedom, Theory and Practice of Robots and Manipulators. In: Proceedings of the 14th CISM–IFToMM Symposium (RoManSy 14), pp. 507–516 (2002)

  30. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A.: Modelling of worm-like motion systems with magneto-elastic elements. Phys. Status Solidi 1(12), 3706–3709 (2004)

    Article  Google Scholar 

  31. Zimmermann, K., Zeidis, I.: Worm-like locomotion as a problem of nonlinear dynamics. J. Theor. Appl. Mech. 45(1), 179–187 (2007)

    Google Scholar 

  32. Miller, G.: The motion dynamics of snakes and worms. Comput. Graph. 22(4), 169–173 (1988)

    Article  Google Scholar 

  33. Steigenberger, J.: On a class of biomorphic motion systems. Faculty of Mathematics and Natural Sciences, Technische Universitaet Ilmenau, Preprint M 12/99 (1999)

  34. Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion with a Focus on Nonpedal Motion Systems. Springer, Heidelberg (2009)

    Google Scholar 

  35. Zimmermann, K., Zeidis, I.: Locomotion systems based on vibration. In: RoManSy 17, Robot Design, Dynamics, and Control, Tokyo, Japan, pp. 51–59 (2008)

  36. Bogolyubov, N.N., Mitropolski, Yu.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach Science, New York (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zeidis.

Additional information

This study was partly supported by the German Research Society (DFG) (projects Zi 540-12/1 and SFR 622) and the Russian Foundation for Basic Research (project 09-01-91330).

An erratum to this article can be found at http://dx.doi.org/10.1007/s11044-009-9166-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, K., Zeidis, I., Bolotnik, N. et al. Dynamics of a two-module vibration-driven system moving along a rough horizontal plane. Multibody Syst Dyn 22, 199–219 (2009). https://doi.org/10.1007/s11044-009-9158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9158-2

Keywords

Navigation