Skip to main content
Log in

Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The development of an algorithm of parametric optimization to achieve optimal cyclic gaits in space for a thirteen-link 3D bipedal robot with twelve actuated joints is proposed. The cyclic walking gait is composed of successive single support phases and impulsive impacts with full contact between the sole of the feet and the ground. The evolution of the joints are chosen as spline functions. The parameters to define the spline functions are determined using an optimization under constraints on the dynamic balance, on the ground reactions, on the validity of impact, on the torques, and on the joints velocities. The cost functional considered is represented by the integral of the torques norm. The torques and the constraints are computed at sampling times during one step to evaluate the cost functional for a feasible walking gait. To improve the convergence of the optimization algorithm the explicit analytical gradient of the cost functional with respect to the optimization parameters is calculated using the recursive computation of torques. The algorithm is tested for a bipedal robot whose numerical walking results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grishin, A.A., Formal’sky, A.M., Lensky, A.V., Zhitomirsky, S.V.: Dynamic walking of a vehicle with two telescopic legs controlled by two drives. Int. J. Robotics Res. 13(2), 137–147 (1994)

    Article  Google Scholar 

  2. Rostami, M., Besonnet, G.: Impactless saggital gait of a biped robot during the single support phase. In: Proceedings of International Conference on Robotics and Automation, pp. 1385–1391 (1998)

  3. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Wiley, New York (1995)

    Google Scholar 

  4. Chen, Y.C.: Solving robot trajectory planning problems with uniform cubic b-splines. Optim. Control Appl. Methods 12(4), 247–262 (1991)

    Article  Google Scholar 

  5. Luca, A.D., Lanari, L., Oriolo, G.: A sensitive approach to optimal spline robot trajectories. Automatica 27(3), 535–539 (1991)

    Article  Google Scholar 

  6. Ostrowski, J.P., Dessai, J.P., Kumar, V.: Optimal gait selection for nonholonomic locomotion systems. Int. J. Robotics Res. 19(3), 225–237 (2000)

    Article  Google Scholar 

  7. Dürrbaum, A., Klier, W., Hahn, H.: Comparison of automatic and symbolic differentiation in mathematical modeling and computer simulation of rigid-body. Multibody Syst. Dyn. 7(4), 331–355 (2002)

    Article  MATH  Google Scholar 

  8. Lee, S.H., Kim, J., Park, F.C., Kim, M., Bobrow, J.E.: Newton-type algorithm for dynamics-based robot movement optimization. IEEE Trans. Robotics Autom. 21(4), 657–667 (2005)

    Article  Google Scholar 

  9. Miossec, S., Aoustin, Y.: Dynamical synthesis of a walking cyclic gait for a biped with point feet. Special issue of lecture Notes in Control and Information Sciences, Fast Motions in Biomechanics and Robotics, Dhiel, M., Mombaur, K. (eds.) Springer (2006)

  10. Bobrow, J.E., Park, F.C., Sideris, A.: Recent advance on the algorithm optimization of robot motion. Special issue of lecture Notes in Control and Information Sciences, Fast Motions in Biomechanics and Robotics, Dhiel, M., Mombaur, K. (eds.), Springer (2006)

  11. Roussel, L., de Wit, C.C., Goswami, A.: Generation of energy optimal complete gait cycles for biped. In: Proc. of the IEEE Conf. on Robotics and Automation, pp. 2036–2042 (2003)

  12. Beletskii, V.V., Chudinov, P.S.: Parametric optimization in the problem of bipedal locomotion, Izv. An SSSR. Mekhanika Tverdogo Tela [Mechanics of Solids], no. 1, pp. 25–35 (1977)

  13. Bessonnet, G., Chesse, S., Sardin, P.: Generating optimal gait of a human-sized biped robot. In: Proc. of the Fifth International Conference on Climbing and Walking Robots, pp. 717–724 (2002)

  14. Channon, P.H., Hopkins, S.H., Pham, D.T.: Derivation of optimal walking motions for a bipedal walking robot. Robotica 2, 165–172 (1992)

    Article  Google Scholar 

  15. Zonfrilli, F., Oriolo, M., Nardi, T.: A biped locomotion strategy for the quadruped robot sony ers-210. In: Proc. of the IEEE Conf. on Robotics and Automation, pp. 2768–2774 (2002)

  16. Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped. Robotica 19(5), 557–569 (2001)

    Article  Google Scholar 

  17. Romero, D.T., Chevallereau, C., Aoustin, Y.: Comparison of different gaits with rotation of the feet for a planar biped. Robotics Auton. Syst. 57(4), 371–383 (2009)

    Article  Google Scholar 

  18. Martin, B., Bobrow, J.E.: Minimum effort motions for open chained manipulators with task-dependent end-effort constraints. Int. J. Robotics Res. 18(2), 213–224 (1999)

    Google Scholar 

  19. Lo, J., Huang, G., Metaxas, D.: Human motion planning based on recursive dynamics and optimal control techniques. Multibody Syst. Dyn. 8, 433–458 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Saidouni, T., Bessonnet, G.: Generating globally optimised saggital gait cycles of a biped robot. Robotica 21(2), 199–210 (2003)

    Article  Google Scholar 

  21. Hu, L., Zhou, C., Sun, Z.: Biped gait optimization using spline function based probability model. In: Proc. of the IEEE Conference on Robotics and Automation, pp. 830–835 (2006)

  22. Marot, J.: Contribution à synthese dynamique optimale de la marche, Ph.D. dissertation, Université de Poitiers France, 2007

  23. Bobrow, J.E., Martin, B., Sohl, G., Wang, E.C., Park, F.C., Kim, K.: Optimal robot motions for physical criteria. J. Robotic Syst. 18(12), 785–792 (2001)

    Article  MATH  Google Scholar 

  24. Garg, D.P., Kumar, M.: Optimization techniques applied to multiple manipulators for path panning and torque minimization. Eng. Appl. Intell. 15, 241–252 (2002)

    Article  Google Scholar 

  25. Angeles, J.: Fundamentals of Robotic Mechanical Systems. Springer, New York (1997)

    MATH  Google Scholar 

  26. Khalil, W., Kleinfinger, J.: A new geometric notation for open and closed loop robots. In: Proc. of the IEEE Conference on Robotics and Automation, pp. 1174–1180 (1985)

  27. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Hermes Sciences Europe (2002)

  28. Luh, J.Y.S., Walker, M.W., Paul, R.C.P.: Resolved-acceleration control of mechanical manipulators. IEEE Trans. Autom. Control 25(3), 468–474 (1980)

    Article  MATH  Google Scholar 

  29. Formal’sky, A.: Locomotion of Anthropomorphic Mechanisms, Nauka, Moscow [In Russian] (1982)

  30. Sakaguchi, M., Furushu, A.S.J., Koizumi, E.: A realization of bounce gait in a quadruped robot with articular-joint-type legs. In: Proc. of the IEEE Conference on Robotics and Automation, pp. 697–702 (1995)

  31. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotics mechanism. Trans. ASME, J. Dyn. Syst., Meas. Control 104, 205–211 (1982)

    Article  MATH  Google Scholar 

  32. Vukobratovic, M., Borovac, B.: Zero moment point-thirty five years of its life. Int. J. Humanoid Robotics 1(1), 157–173 (2004)

    Article  Google Scholar 

  33. Vukobratovic, M., Stepanenko, Y.: On the stability of anthropomorphic systems. Math. Biosci. 15, 1–37 (1972)

    Article  MATH  Google Scholar 

  34. Vukobratovic, M., Borovac, B.: Biped Locomotion-Dynamics, Stability, Control and Application. Springer, Berlin (1990)

    MATH  Google Scholar 

  35. Ahlberg, N.H., et al.: The Theory of Splines and Their Applications. Academic Press, New York (1967)

    MATH  Google Scholar 

  36. Tlalolini Romero, D.: Génération de mouvements optimaux de marche pour des robots bipides 3d. PhD thesis, Ecole Centrale de Nantes, Université de Nantes, Nantes, France, Décembre 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Aoustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tlalolini, D., Aoustin, Y. & Chevallereau, C. Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Syst Dyn 23, 33–56 (2010). https://doi.org/10.1007/s11044-009-9175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9175-1

Keywords

Navigation