Skip to main content
Log in

Human lifting simulation using a multi-objective optimization approach

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a multiobjective optimization (MOO) approach to predicting dynamic lifting for a three-dimensional, highly redundant digital human model with 55 degrees of freedom. The optimization problem is formulated to optimize two objective functions simultaneously—dynamic effort and stability—subject to basic physical and kinematical constraints. The predictive dynamics approach is used to solve for the joint angles, torque profiles, and ground reaction forces. The weighted sum approach of MOO is used to aggregate the two objective functions, and the Pareto optimal set for the problem is generated by systematically varying the weighting parameters for the objective functions. Experimental data are used to validate the final simulation. Several examples are presented to demonstrate the effect of the weighting parameters for the two objective functions on the predicted box-lifting strategies. The results show that the proposed MOO approach improves the simulation results compared to the single objective optimization formulation. Also, the formulation is less sensitive to the weighting coefficient for the stability criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaffin, D.B., Anderson, D.B.J.: Occupational Biomechanics. Wiley, New York (1991)

    Google Scholar 

  2. Huang, C., Sheth, P.N., Granata, K.P.: Multibody dynamics integrated with muscle models and space-time constraints for optimization of lifting movements. In: ASME International Design Engineering Technical Conferences. Long Beach, CA, ASME Paper No. DETC2005-85385 (2005)

  3. Dysart, M.J., Woldstad, J.C.: Posture prediction for static sagittal-plane lifting. J. Biomech. 29(10), 1393–1397 (1996)

    Article  Google Scholar 

  4. Zhang, X., Nussbaum, M.A., Chaffin, D.B.: Back lift versus leg lift: an index and visualization of dynamic lifting strategies. J. Biomech. 33(6), 777–782 (2000)

    Article  Google Scholar 

  5. Arisumi, H., Chardonnet, J.R., Kheddar, A., Yokoi, K.: Dynamic lifting motion of humanoid robots. In: 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 2661–2667 (2007)

  6. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Leboeuf, F., Bessonnet, G., Seguin, P., Lacouture, P.: Energetic versus sthenic optimality criteria for gymnastic movement synthesis. Multibody Syst. Dyn. 16, 213–236 (2006)

    Article  MATH  Google Scholar 

  8. Bottasso, C.L., Prilutsky, B.I., Croce, A., Imberti, E., Sartirana, S.: A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system. Multibody Syst. Dyn. 16, 123–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xiang, Y., Chung, H.J., Kim, J.H., Bhatt, R., Rahmatalla, S., Yang, J., Marler, T., Arora, J.S., Abdel-Malek, K.: Predictive dynamics: an optimization-based novel approach for human motion simulation. Struct. Multidiscip. Optim. (2009). doi:10.1007/s00158-009-0423-z

    Google Scholar 

  10. Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction: one step formulation. Int. J. Numer. Methods Eng. 79(6), 667–695 (2009)

    Article  MATH  Google Scholar 

  11. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech. 215–221 (1955)

  12. Cheng, H., Obergefell, L., Rizer, A.: Generator of body (GEBOD) Manual, AL/CF-TR-1994-0051. Armstrong Laboratory, Wright-Patterson Air Force Base, OH (1994)

  13. Toogood, R.W.: Efficient robot inverse and direct dynamics algorithms using micro-computer based symbolic generation. In: IEEE International Conference on Robotics and Automation, Scottsdale, AZ, pp. 1827–1832 (1989)

  14. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based motion prediction of mechanical systems: sensitivity analysis. Struct. Multidiscip. Optim. 37(6), 595–608 (2009)

    Article  MathSciNet  Google Scholar 

  15. Vukobratović, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)

    Article  Google Scholar 

  16. Marler, R.T., Arora, J.S.: Function-transformation methods for multi-objective optimization. Eng. Optim. 37(6), 551–570 (2005)

    Article  MathSciNet  Google Scholar 

  17. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, S.H., Kim, J., Park, F.C., Kim, M., Bobrow, J.E.: Newton-type algorithm for dynamics-based robot movement optimization. IEEE Trans. Robot. 21(4), 657–667 (2005)

    Article  Google Scholar 

  19. Authier, M., Lortie, M., Gagnon, M.: Manual handling techniques: Comparing novices and experts. Int. J. Ind. Ergon. 17(5), 419–429 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasbir S. Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Arora, J.S., Rahmatalla, S. et al. Human lifting simulation using a multi-objective optimization approach. Multibody Syst Dyn 23, 431–451 (2010). https://doi.org/10.1007/s11044-009-9186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9186-y

Keywords

Navigation