Skip to main content
Log in

Multi-body dynamics simulation of geometrically exact Cosserat rods

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a viscoelastic rod model that is suitable for fast and accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (‘stiff’ dof), bending and torsion (‘soft’ dof). For inner dissipation, a consistent damping potential proposed by Antman is chosen. We parametrise the rotational dof by unit quaternions and directly use the quaternionic evolution differential equation for the discretisation of the Cosserat rod curvature.

The discrete version of our rod model is obtained via a finite difference discretisation on a staggered grid. After an index reduction from three to zero, the right-hand side function f and the Jacobian f/(q,v,t) of the dynamical system \(\dot{q}=v\), \(\dot{v}=f(q,v,t)\) is free of higher algebraic (e.g. root) or transcendental (e.g. trigonometric or exponential) functions and, therefore, cheap to evaluate. A comparison with Abaqus finite element results demonstrates the correct mechanical behaviour of our discrete rod model. For the time integration of the system, we use well established stiff solvers like Radau5 or Daspk. As our model yields computational times within milliseconds, it is suitable for interactive applications in ‘virtual reality’ as well as for multi-body dynamics simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman, S.S.: Kirchhoff’s problem for nonlinearly elastic rods. Q. Appl. Math. 32, 221–240 (1974)

    MATH  MathSciNet  Google Scholar 

  2. Antman, S.S.: Dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods. J. Nonlinear Sci. 6, 1–18 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Arnold, M.: Numerical methods for simulation in applied mechanics. In: Arnold, M., Schiehlen, W. (eds.) Simulation Techniques for Applied Mechanics, pp. 191–246. Springer, Berlin (2008)

    Chapter  Google Scholar 

  5. Bauchau, O.A., Epple, A., Bottasso, C.L.: Scaling of constraints and augmented Lagrangian formulations in multibody dynamics simulations. J. Comput. Nonlinear Dyn. 4(2), 021007 (2009)

    Article  Google Scholar 

  6. Bauchau, O.A., Trainelli, L.: The vectorial parametrization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bauchau, O.A., Epple, A., Heo, S.: Interpolation of finite rotations in flexible multi-body dynamics simulations. Proc. IME Multi-body Dyn. 222(4), 353–366 (2008)

    Google Scholar 

  8. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 63:1–63:12 (2008)

    Article  Google Scholar 

  9. Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Methods Eng. 79(4), 444–473 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Betsch, P., Steinmann, P.: A DAE approach to flexible multibody dynamics. Multibody Syst. Dyn. 8, 365–389 (2002)

    Article  MathSciNet  Google Scholar 

  11. Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1755–1788 (2002)

    Article  MathSciNet  Google Scholar 

  12. Bobenko, A.I., Suris, Y.B.: Discrete time Lagrangian mechanics on Lie groups with an application to the Lagrange top. Commun. Math. Phys. 204, 147–188 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cardona, A., Géradin, M.: A beam finite element nonlinear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2434 (1998)

    Article  Google Scholar 

  14. Cardona, A., Géradin, M.: Flexible Multibody Dynamics. A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  15. Cartan, H.: Differential Forms. Kershaw, Kershaw (1971), reprinted by Dover, 2006

    MATH  Google Scholar 

  16. Chouaieb, N., Maddocks, J.H.: Kirchhoff’s problem of helical equilibria of uniform rods. J. Elast. 77, 221–247 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 68(1), 87–92 (1968)

    Google Scholar 

  18. Craig, R.R. Jr., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, New York (2006)

    MATH  Google Scholar 

  19. Craig, R.R. Jr., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7) (1968)

  20. Crisfield, M.A., Jelenic, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite element implementation. Proc. R. Soc. Lond. 455, 1125–1147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dichmann, D.J., Maddocks, J.H.: An impetus-striction simulation of the dynamics of an elastica. J. Nonlinear Sci. 6, 271–292 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44(1), 1–23 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ebbinghaus, H.D., et al.: Numbers. Springer, Berlin (1992)

    Google Scholar 

  24. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner, Leipzig (1998)

    MATH  Google Scholar 

  25. Hanson, A.J.: Visualizing Quaternions. Elsevier, Amsterdam (2005)

    Google Scholar 

  26. Hodges, D.H.: Nonlinear composite beam theory. Prog. Astronaut. Aeronaut. 213 (2006)

  27. Hairer, E., Lubich, C., Roche, M.: The numerical solutions of differential-algebraic systems by Runge-Kutta methods. In: Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989)

    Google Scholar 

  28. Hairer, E., Noersett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1993)

    MATH  Google Scholar 

  29. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

    MATH  Google Scholar 

  30. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002)

    MATH  Google Scholar 

  31. Ibrahimbegović, A.: On finite element implementations of geometrically nonlinear Reissner’s beam theory: three dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 112, 11–26 (1995)

    Article  Google Scholar 

  32. Ibrahimbegović, A., Frey, F.: Finite element analysis of linear and nonlinear planar deformations of elastic initially curved beams. Int. J. Numer. Methods Eng. 36, 3239–3258 (1992)

    Article  Google Scholar 

  33. Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to Cosserat rod theory—Part I: Static equilibria. Int. J. Numer. Methods Eng. (2010). doi:10.1002/nme.2950. Preprint: Berichte des ITWM Nr. 183 (2010)

  34. Kuipers, J.B.: Quaternions and Rotation Sequences. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  35. Kehrbaum, S., Maddocks, J.H.: Elastic rods, rigid bodies, quaternions and the last quadrature. Philos. Trans. R. Soc. Lond. A 355, 2117–2136 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. (Crelle) 56, 285–343 (1859)

    MATH  Google Scholar 

  37. Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lang, H., Arnold, M.: Numerical aspects in the dynamic simulation of geometrically exact rods. Appl. Numer. Math. (accepted) Preprint: Ber. ITWM Kaiserslautern, 179 (2009)

  39. Lang, H., Linn, J.: Lagrangian field theory in space-time for geometrically exact Cosserat rods. Preprint: Ber. ITWM Kaiserslautern, 150 (2009)

  40. Linn, J., Stephan, T., Carlsson, J., Bohlin, R.: Fast simulation of quasistatic cable deformations for Virtual Reality applications. In: Bonilla, L.L., et al. (eds.) Progress in Industrial Mathematics at ECMI 2006, pp. 247–253. Springer, Berlin (2007). Preprint: Ber. ITWM Kaiserslautern, 143

    Google Scholar 

  41. Linn, J., Stephan, T.: Simulation of quasistatic deformations using discrete rod models. In: Bottasso, C.L., Masarati, P., Trainelli, L. (eds.) Multibody Dynamics 2007, ECCOMAS Thematic Conference. Milano, Italy, 25–28 June 2007. Preprint: Ber. ITWM Kaiserslautern, 144

  42. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927), reprinted by Dover, 1944

    MATH  Google Scholar 

  43. Lubich, C.: Integration of stiff mechanical systems by Runge-Kutta methods. J. Appl. Math. Phys. 44, 1022–1053 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  44. Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85, 311–354 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  45. Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: general modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Matthies, H., Strang, G.: The solution of nonlinear finite element equations. Int. J. Numer. Methods Eng. 14, 1613–1626 (1967)

    Article  MathSciNet  Google Scholar 

  47. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial Value Problems. Interscience Publishers, New York (1967)

    MATH  Google Scholar 

  48. Nizette, M., Goriely, A.: Towards a classification of Euler–Kirchhoff filaments. J. Math. Phys. 40(6), 2830–2866 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Petzold, L.R.: A description of DASSL: a differential algebraic system solver. In: Stepleman, R.S. (ed.) Scientific Computing. North-Holland, Amsterdam (1981)

    Google Scholar 

  50. Rabier, P.J., Rheinboldt, W.C.: Non-Holonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  51. Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52, 87–95 (1973)

    MATH  Google Scholar 

  52. Romero, I.: The interpolation of rotations and its application to finite-element models of geometrically exact rods. Comput. Mech. 34, 121–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  53. Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645–1670 (2009)

    MathSciNet  Google Scholar 

  54. Schiehlen, W.O.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  55. Schiehlen, W., Eberhard, P.: Technische Dynamik. Modelle für Regelung und Simulation. Teubner, Leipzig (2004)

    MATH  Google Scholar 

  56. Schwab, A.L., Meijaard, P.J.: How to draw Euler angles and utilize Euler parameters. In: Proceedings of IDETC/CIE (2008)

  57. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  58. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge (2005)

  59. Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)

    Article  Google Scholar 

  60. Simeon, B.: Numerical analysis of flexible multibody dynamics. Multibody Syst. Dyn. 6, 305–325 (2001)

    Article  MATH  Google Scholar 

  61. Simo, J.C.: A finite strain beam formulation. The three dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    Article  MATH  Google Scholar 

  62. Simo, J.C., Vu-Quoc, L.: A three dimensional finite strain rod model. Part II. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  63. Spillmann, J., Teschner, M.: CoRdE. Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: Eurographics/ACM SIGGRAPH, pp. 1–10 (2007)

  64. Zupan, E., Maje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, H., Linn, J. & Arnold, M. Multi-body dynamics simulation of geometrically exact Cosserat rods. Multibody Syst Dyn 25, 285–312 (2011). https://doi.org/10.1007/s11044-010-9223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-010-9223-x

Keywords

Navigation