Skip to main content
Log in

Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The Absolute Nodal Coordinate Formulation (ANCF) is a relatively new nonlinear finite element type that uses Hermite splines for shape functions. In this investigation, the ANCF is examined as a possible tool for use in modeling the media in flexible media transport systems, such as printers, copy machines, and roll-to-roll systems. However, it is demonstrated using an example of a thin plate-type ANCF finite element that these elements can suffer from significant membrane locking, which can be problematic for paper or paper-like media. One source of this locking is identified to be a property of all parametric curves that are composed of polynomials. The property is that for parametric polynomial curves, changes in the state of curvature of the curve cause changes in the distribution of points along the curve. This property is labeled Curve-Induced Distortion (CID) by the authors of this paper. CID can cause axial and membrane strain distortion in elements, causing them to be overly stiff. A new solution method is proposed to directly counteract CID in finite elements that use cubic Hermite curves for shape functions, specifically for modeling problems in which bending occurs primarily around one axis, such as paper in printing and media transport machinery. This method is labeled Flat-Mapped Extension Modeling (FMEM). FMEM is a mixed field method that uses a 1D Hermite polynomial kinematically linked to the 3D Hermite curve to represent the axial displacement field. FMEM significantly reduces the effect of CID in the ANCF element tested here. This investigation demonstrates using a single ANCF plate element type that the ANCF’s accuracy can be significantly improved by FMEM with only a small increase in computational cost. It is shown with this plate-element example that without correcting CID, the ANCF element tested is computationally much slower than contemporary methods like the co-rotational formulation for similar accuracy. But with FMEM, the ANCF is significantly faster than the co-rotational formulation for similar accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aminpour, M.A.: An assumed-stress hybrid 4-node shell element with drilling degrees of freedom. Int. J. Numer. Methods Eng. 33, 19–38 (1992)

    Article  MATH  Google Scholar 

  2. Aminpour, M.A.: Direct formulation of a hybrid 4-node shell element with drilling degrees of freedom. Int. J. Numer. Methods Eng. 35, 997–1013 (1992)

    Article  MATH  Google Scholar 

  3. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  4. Choi, J.: A study on the analysis of rigid and flexible body dynamics with contact. Ph.D. Dissertation, Seoul National University, Seoul (2009)

  5. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward the Integration of CAD and FEA. Wiley, New York (2009)

    Google Scholar 

  6. Dmitrochenko, O.N., Mikkola, A.M.: A formal procedure and invariants of a transition from conventional finite elements to the absolute nodal coordinate formulation. Multibody Syst. Dyn., 22(4), 323–339 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dmitrochenko, O.N., Pogorelov, D.Yu.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)

    Article  MATH  Google Scholar 

  8. Dmitrochenko, O.N., Yoo, W.S., Pogorelov, D.: Helicoseir as shape of a rotating string (II): 3D theory and simulation using ANCF. Multibody Syst. Dyn. 15(2), 181–200 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc. Part K, J. Multi-Body Dyn. 219(4), 345–355 (2005)

    Google Scholar 

  10. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280(3–5), 719–738 (2005)

    Article  Google Scholar 

  11. Farouki, R.T., Sakkalis, T.: Rational space curves are not “unit speed”. Comput. Aided Geom. Des. 24(4), 238–240 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Farouki, R.T., Sakkalis, T.: Real rational curves are not ‘unit speed’. Comput. Aided Geom. Des. 8(2), 151–157 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fung, Y.C.: A First Course in Continuum Mechanics. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  14. Garcia-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007)

    Article  MATH  Google Scholar 

  15. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal doordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45(1–2), 109–130 (2006)

    Article  MATH  Google Scholar 

  17. Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: Cuadrado, G., Orden, G. (eds.) Multibody Dynamics, ECCOMAS Thematic Conference, Madrid, Spain (2005)

    Google Scholar 

  18. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  20. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1(2), 103–108 (2006)

    Article  Google Scholar 

  21. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9(3), 283–309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Moita, G.F., Crisfield, M.A.: A finite element formulation for 3-D continua using the co-rotational technique. Int. J. Numer. Methods Eng. 39(22), 3775–3792 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mortenson, M.: Geometric Modeling, 3rd edn. Industrial Press Inc., New York (2006)

    Google Scholar 

  24. Pian, T.H.H.: Finite elements based on consistently assumed stresses and displacements. Finite Elem. Anal. Des. 1(2), 131–140 (1985)

    Article  MATH  Google Scholar 

  25. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  26. RecurDyn Theoretical Manual. http://www.functionbay.co.kr (2010)

  27. Reissner, E.: On a variational theorem for finite elastic deformations. J. Math. Phys. 32, 129–135 (1953)

    MATH  MathSciNet  Google Scholar 

  28. Schwab, A.L., Gerstmayr, J., Meijaard, J.P.: Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: Proc. ASME IDETC/CIE 2007 DETC2007-34754 (CDROM) (2007)

    Google Scholar 

  29. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of IDETC/CIE 2005 ASME International Design Engineering Technical Conference, Long Beach, CA. ASME, New York (2005). (CDROM), Paper Number DETC2005-85104

    Google Scholar 

  30. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  31. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shabana, A.A.: An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Technical Report MBS96-1-UIC, University of Illinois at Chicago, Chicago, IL (1996)

  33. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn., 34(1–2), 53–74 (2003)

    Article  MATH  Google Scholar 

  34. Stolarski, H., Belytschko, T.: Shear and membrane locking in curved C0 elements. Comput. Methods Appl. Mech. Eng., 41(3), 279–296 (1983)

    Article  MATH  Google Scholar 

  35. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng., Proc. Part K, J. Multi-Body Dyn. 221(2), 219–231 (2007)

    Google Scholar 

  36. Tong, P., Pian, T.H.H.: A variational principle and the convergence of a finite-element method based on assumed stress distribution. Int. J. Solids Struct., 5(5), 463–472 (1969)

    Article  MATH  Google Scholar 

  37. Yakoub, R.Y., Shabana, A.A.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des., 123(4), 606–613 (2001)

    Article  Google Scholar 

  38. Yoo, W.S., Dmitrochenko, O.N., Park, S.J., Lim, O.K.: A new thin spatial beam element using the absolute nodal coordinates: application to a rotating strip. Mech. Based Des. Struct. Mach., 33(3–4), 399–422 (2005)

    Article  Google Scholar 

  39. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, Vol. 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hwan Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanborn, G.G., Choi, J. & Choi, J.H. Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody Syst Dyn 26, 191–211 (2011). https://doi.org/10.1007/s11044-011-9248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9248-9

Keywords

Navigation