Skip to main content
Log in

Development of an asymptotic modeling methodology for tibio-femoral contact in multibody dynamic simulations of the human knee joint

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A new methodology for modeling articular tibio-femoral contact based on the recently developed asymptotic model of frictionless elliptical contact interaction between thin biphasic cartilage layers is presented. The developed mathematical model of articular contact is extended to the case of contact between arbitrary viscoelastic incompressible coating layers. The approach requires use of the smooth contact surface geometry and efficient contact points detection methods. A generalization of the influence surface theory based method for representing articular surfaces from the unstructured noisy surface data is proposed. The normal contact forces are determined analytically based on the exact solution for elliptical contact between thin cartilage layers modeled as viscoelastic incompressible layers. The effective geometrical characteristics of articular surfaces are introduced for use in the developed asymptotic models of elliptical contact between articular surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eberhard, P., Spägele, T., Gollhofer, A.: Investigations for the dynamical analysis of human motion. Multibody Syst. Dyn. 3, 1–20 (1999)

    Article  MATH  Google Scholar 

  2. Kłodowski, A., Rantalainen, T., Mikkola, A., Heinonen, A., Sievänen, H.: Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst. Dyn. 25, 395–409 (2011)

    Article  MATH  Google Scholar 

  3. Herzog, W., Federico, S.: Considerations on joint and articular cartilage mechanics. Biomech. Model. Mechanobiol. 5, 64–81 (2006)

    Article  Google Scholar 

  4. Wismans, J., Veldpaus, F., Janssen, J., Huson, A., Struben, P.: A three-dimensional mathematical model of the knee-joint. J. Biomech. 13, 677–679 (1980) 681–685

    Article  Google Scholar 

  5. Abdel-Rahman, E.M., Hefzy, M.S.: Three-dimensional dynamic behaviour of the human knee joint under impact loading. Med. Eng. Phys. 20, 276–290 (1998)

    Article  Google Scholar 

  6. Ling, Z.-K., Guo, H.-Q., Boersma, S.: Analytical study on the kinematic and dynamic behaviors of a knee joint. Med. Eng. Phys. 19, 29–36 (1997)

    Article  Google Scholar 

  7. Blankevoort, L., Kuiper, J.H., Huiskes, R., Grootenboer, H.J.: Articular contact in a three-dimensional model of the knee. J. Biomech. 24, 1019–1031 (1991)

    Article  Google Scholar 

  8. Bei, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26, 777–789 (2004)

    Article  Google Scholar 

  9. Machado, M., Flores, P., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60, 459–478 (2010)

    Article  MATH  Google Scholar 

  10. Barber, J.R.: Contact problems for the thin elastic layer. Int. J. Mech. Sci. 32, 129–132 (1990)

    Article  MATH  Google Scholar 

  11. Ateshian, G.A., Lai, W.M., Zhu, W.B., Mow, V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)

    Article  Google Scholar 

  12. Wilson, W., van Donkelaar, C.C., van Rietberger, R., Huiskes, R.: The role of computational models in the search for the mechanical behaviour and damage mechanisms of articular cartilage. Med. Eng. Phys. 27, 810–826 (2005)

    Article  Google Scholar 

  13. Wu, J.Z., Herzog, W., Epstein, M.: Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. J. Biomech. 31, 165–169 (1997)

    Article  Google Scholar 

  14. Caruntu, D.I., Hefzy, M.S.: 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints. J. Biomech. Eng. 126, 44–53 (2004)

    Article  Google Scholar 

  15. Pérez-González, A., Fenollosa-Esteve, C., Sancho-Bru, J.L., Sánchez-Marín, F.T., Vergara, M., Rodríguez-Cervantes, P.J.: A modified elastic foundation contact model for application in 3D models of the prosthetic knee. Med. Eng. Phys. 30, 387–398 (2008)

    Article  Google Scholar 

  16. Lin, Y.-Ch., Haftka, R.T., Queipo, N.V., Fregly, B.J.: Surrogate articular contact models for computationally efficient multibody dynamic simulations. Med. Eng. Phys. 32, 584–594 (2010)

    Article  Google Scholar 

  17. Argatov, I., Mishuris, G.: Elliptical contact of thin biphasic cartilage layers: exact solution for monotonic loading. J. Biomech. 44, 759–761 (2011)

    Article  Google Scholar 

  18. Argatov, I., Mishuris, G.: Frictionless elliptical contact of thin viscoelastic layers bonded to rigid substrates. Appl. Math. Model. 35, 3201–3212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, J.H.-C., Ryu, J., Han, J.-S., Rowen, B.: A new method for the representation of articular surfaces using the influence surface theory of plates. J. Biomech. 33, 629–633 (2000)

    Article  Google Scholar 

  20. Huiskes, R., Van Dijk, R., de Lange, A., Woltring, H.J., Van Rens, Th.J.G.: Kinematics of the human knee joint. In: Berme, N., Engin, A.E., Correia da Silva, K.M. (eds.) Biomechanics of Normal and Pathological Human Articulating Joints, pp. 165–187. Martinus Nijhoff, Dordrecht (1985)

    Google Scholar 

  21. Glocker, Ch.: Formulation of spatial contact situations in rigid multibody systems. Comput. Methods Appl. Math. 177, 199–214 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Aleksandrov, V.M., Vorovich, I.I.: Contact problems for the elastic layer of small thickness. J. Appl. Math. Mech. 28, 425–427 (1964)

    Article  MathSciNet  Google Scholar 

  23. Johnson, K.L.: Contact Mechanics. Cambridge Univ. Press, Cambridge (1985)

    MATH  Google Scholar 

  24. Pandy, M.G., Sasaki, K., Kim, S.: A three-dimensional musculoskeletal model of the human knee joint. Part 1: theoretical construction. Comput. Methods Biomech. Biomed. Eng. 1, 87–108 (1997)

    Article  Google Scholar 

  25. Argatov, I.I.: The pressure of a punch in the form of an elliptic paraboloid on a thin elastic layer. Acta Mech. 180, 221–232 (2005)

    Article  MATH  Google Scholar 

  26. Chadwick, R.S.: Axisymmetric indentation of a thin incompressible elastic layer. SIAM J. Appl. Math. 62, 1520–1530 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, J.Z., Herzog, W., Epstein, M.: An improved solution for the contact of two biphasic cartilage layers. J. Biomech. 30, 371–375 (1997)

    Article  Google Scholar 

  28. Li, G., Sakamoto, M., Chao, E.Y.S.: A comparison of different methods in predicting static pressure distribution in articulating joints. J. Biomech. 30, 635–638 (1997)

    Article  Google Scholar 

  29. Kücük, H.: The effect of modeling cartilage on predicted ligament and contact forces at the knee. Comput. Biol. Med. 36, 363–375 (2006)

    Article  Google Scholar 

  30. Abdel-Rahman, E.M., Hefzy, M.S.: A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115, 357–365 (1993)

    Article  Google Scholar 

  31. Hohe, J., Ateshian, G., Reiser, M., Englmeier, K.-H., Eckstein, F.: Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in vivo. Magn. Reson. Med. 47, 554–561 (2002)

    Article  Google Scholar 

  32. Koo, S., Andriacchi, T.P.: A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee. J. Biomech. 40, 2961–2966 (2007)

    Article  Google Scholar 

  33. Argatov, I., Mishuris, G.: Contact problem for thin biphasic cartilage layers: perturbation solution. Q. J. Mech. Appl. Math. 64, 297–318 (2011)

    Article  MathSciNet  Google Scholar 

  34. Ateshian, G.A.: A B-spline least-squares surface fitting method for articular surfaces of diarthrodial joints. J. Biomech. Eng. 115, 366–373 (1993)

    Article  Google Scholar 

  35. Dhaher, Y.Y., Delp, S.L., Rymer, W.Z.: The use of basis functions in modelling joint articular surfaces: application to the knee joint. J. Biomech. 33, 901–907 (2000)

    Article  Google Scholar 

  36. van Ruijven, L.J., Beek, M., van Eijden, T.M.G.J.: Fitting parametrized polynomials with scattered surface data. J. Biomech. 32, 715–720 (1999)

    Article  Google Scholar 

  37. Hirokawa, S., Ueki, T., Ohtsuki, A.: A new approach for surface fitting method of articular joint surfaces. J. Biomech. 37, 1551–1559 (2004)

    Article  Google Scholar 

  38. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42, 440–445 (1975)

    Article  Google Scholar 

  40. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    Article  MATH  Google Scholar 

  42. Monteiro, N.M.B., da Silva, M.P.T., Folgado, J.O.M.G., Melancia, J.P.L.: Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody Syst. Dyn. 25, 245–270 (2011)

    Article  Google Scholar 

  43. Silva, M.P.T., Ambrósio, J.A.C., Pereira, M.S.: Biomechanical model with joint resistance for impact simulation. Multibody Syst. Dyn. 1, 65–84 (1997)

    Article  MATH  Google Scholar 

  44. Guess, T.M., Thiagarajan, G., Kia, M., Mishra, M.: A subject specific multibody model of the knee with menisci. Med. Eng. Phys. 32, 505–515 (2010)

    Article  Google Scholar 

  45. Argatov, I.I.: Asymptotic modeling of the impact of a spherical indenter on an elastic half-space. Int. J. Solids Struct. 45, 5035–5048 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Argatov.

Additional information

The financial support from the European Union Seventh Framework Programme under contract number PIIF-GA-2009-253055 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argatov, I. Development of an asymptotic modeling methodology for tibio-femoral contact in multibody dynamic simulations of the human knee joint. Multibody Syst Dyn 28, 3–20 (2012). https://doi.org/10.1007/s11044-011-9275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9275-6

Keywords

Navigation