Skip to main content
Log in

Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamic response of a planar rigid multi-body system with stick–slip friction in revolute clearance joints is studied. LuGre friction law is proposed to model the stick–slip friction at the revolute clearance joints. This is because using this law, one can capture the variation of the friction force with slip velocity, thus making it suitable for studies involving stick–slip motions. The effective coefficient of friction is represented as a function of the relative tangential velocity of the contacting bodies, that is, the journal and the bearing, and an internal state. In LuGre friction model, the internal state is considered to be the average bristle deflection of the contacting bodies. By applying the LuGre friction law on a typical slider–crank mechanism, the friction force in the revolute joint having clearance is seen not to have a discontinuity at zero slip velocity throughout the simulation unlike in static friction models. In addition, LuGre model was observed to capture the Stribeck effect which is a phenomenon associated directly with stick–slip friction. The friction forces are seen to increase with increase in input speed. The effect of stick–slip friction on the overall dynamic behavior of a mechanical system at different speeds was seen to vary from one clearance joint to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wanghui, B., Zhenyu, L., Jianrong, T., Shuming, G.: Detachment avoidance of joint elements of a robotic manipulator with clearances based on trajectory planning. Mech. Mach. Theory 45, 925–940 (2010)

    Article  MATH  Google Scholar 

  2. Erkaya, S., Uzmay, I.: A neural-genetic (nn-ga) approach for optimising mechanisms having joints with clearance. Multibody Syst. Dyn. 20, 69–83 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Erkaya, S., Uzmay, I.: Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mech. Mach. Theory 44, 222–234 (2009)

    Article  MATH  Google Scholar 

  4. Erkaya, S., Uzmay, I.: Optimization of transmission angle for slider–crank mechanism with joint clearances. Struct. Multidiscip. Optim. 37, 493–508 (2009)

    Article  Google Scholar 

  5. Xianzhen, H., Yimin, Z.: Robust tolerance design for function generation mechanisms with joint clearances. Mech. Mach. Theory 45, 1286–1297 (2010)

    Article  MATH  Google Scholar 

  6. Dong, X., Ye, J.-s.J., Hu, X.-f.: Kinetic uncertainty analysis of the reheat-stop-valve mechanism with multiple factors. Mech. Mach. Theory 45, 1745–1765 (2010)

    Article  MATH  Google Scholar 

  7. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998)

    Article  MATH  Google Scholar 

  8. Ravn, P., Shivaswamy, S., Alshaer, B.J., Lankarani, H.M.: Joint clearances with lubricated long bearings in multibody mechanical systems. J. Mech. Des. 122, 484–488 (2000)

    Article  Google Scholar 

  9. Chunmei, J., Yang, Q., Ling, F., Ling, Z.: The nonlinear dynamic behavior of an elastic linkage mechanism with clearances. J. Sound Vib. 249(2), 213–226 (2002)

    Article  Google Scholar 

  10. Chang, Z.: Nonlinear dynamics and analysis of four-bar linkage with clearance. In: Proceedings of 12th IFToMM Congress, France (2007)

    Google Scholar 

  11. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37, 895–913 (2002)

    Article  MATH  Google Scholar 

  12. Flores, P., Ambrosio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  13. Flores, P., Ambrosio, J.: Revolute joints with clearance in multibody systems. Compos. Struct. 82, 1359–1369 (2004)

    Article  Google Scholar 

  14. Erkaya, S., Uzmay, I.: Experimental investigation of joint clearance effects on the dynamics of a slider–crank mechanism. Multibody Syst. Dyn. 24, 81–102 (2010)

    Article  MATH  Google Scholar 

  15. Shiau, T.N., Tsai, Y.J., Tsai, M.S.: Nonlinear dynamic analysis of a parallel mechanism with consideration of joint effects. Mech. Mach. Theory 43, 491–505 (2008)

    Article  MATH  Google Scholar 

  16. Khemili, I., Romdhane, L.: Dynamic analysis of a flexible slider–crank mechanism with clearance. Eur. J. Mech. A, Solids 27, 882–898 (2008)

    Article  MATH  Google Scholar 

  17. Erkaya, S., Uzmay, I.: Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 58, 179–198 (2009)

    Article  MATH  Google Scholar 

  18. Ravn, P., Shivaswamy, S., Lankarani, H.M.: Treatment of lubrication in long bearings for joint clearances in multibody mechanical systems. In: Proceedings of the ASME Design Technical Conference, Las Vegas (1999)

    Google Scholar 

  19. Olivier, A.B., Rodriguez, J.: Modeling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39, 41–63 (2002)

    Article  MATH  Google Scholar 

  20. Jia, X., Jin, D., Ji, L., Zhang, J.: Investigation on the dynamic performance of the tripod-ball sliding joint with clearance in a crank–slider mechanism. Part 1. Theoretical and experimental results. J. Sound Vib. 252(5), 919–933 (2002)

    Article  Google Scholar 

  21. Bing, S., Ye, J.: Dynamic analysis of the reheat-stop-valve mechanism with revolute clearance joint in consideration of thermal effect. Mech. Mach. Theory 43(12), 1625–1638 (2008)

    Article  MATH  Google Scholar 

  22. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dupac, M., Beale, D.G.: Dynamic analysis of a flexible linkage mechanism with cracks and clearance. Mech. Mach. Theory (2010). doi:10.1016/j.mechmachtheory.2010.07.006

    Google Scholar 

  24. Flores, P., Ambrosio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56(3), 277–295 (2009)

    Article  MATH  Google Scholar 

  25. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 4, 633–653 (2010)

    Article  MathSciNet  Google Scholar 

  26. Dubowsky, S., Moening, M.F.: An experimental and analytical study of impact forces in elastic mechanical systems with clearances. Mech. Mach. Theory 13, 451–465 (1978)

    Article  Google Scholar 

  27. Megahed, S.M., Haroun, A.F.: Analysis of the dynamic behavioral performance of mechanical systems with multi-clearance joints. J. Comput. Nonlinear Dyn. 7, 011002 (2011)

    Article  Google Scholar 

  28. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T.L., Sawyer, W.G.: Analysis of planar multibody systems with revolute joint wear. Wear 268, 643–652 (2010)

    Article  Google Scholar 

  29. Mukras, S., Mauntler, N., Kim, N., Schmitz, T., Sawyer, G.: Modeling a slider–crank mechanism with joint wear. Tech. rep. University of Florida (2008)

  30. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Compos. Struct. 87, 913–929 (2009)

    Article  Google Scholar 

  31. Flores, P., Koshy, C., Lankarani, H., Ambrosio, J., Claro, J.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. (2010)

  32. Flores, P.: Dynamic analysis of mechanical systems with imperfect kinematic joints. Ph.D. thesis, Universidade do Minho Para (2004)

  33. Pennestri, E., Valentini, P.P., Vita, L.: Multibody dynamics simulation of planar linkages with Dahl friction. Multibody Syst. Dyn. 17, 321–347 (2007)

    Article  MathSciNet  Google Scholar 

  34. Karnopp, D.: Computer simulation of slip-stick friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107(1), 100–103 (1985)

    Article  Google Scholar 

  35. Kim, M.: Dynamic simulation for multi-body systems linking matlab. Master’s thesis, University of Waterloo, Ontario, Canada (2003)

  36. Changkuan, Ju: Modeling friction phenomenon and elastomeric dampers in multi-body dynamics analysis. Ph.D. thesis, School of Aerospace Engineering, Georgia Institute of Technology (2009)

  37. Lankarani, H.M., Nikravsh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  38. Iurian, C., Ikhouane, F., Rodellar, J., Grino, R.: Identification of a system with dry friction. Tech. rep., Universitat Politecnica De Catalunya (2005)

  39. Johnson, C.T., Lorenz, R.D.: Experimental identification of friction and its compensation in precise position controlled mechanisms. In: Proceedings of IEEE Transactions on Industry Applications, vol. 28, pp. 1392–1398 (1992)

    Google Scholar 

  40. Coulomb, C.A.: Theories of simple machines. Memoires de Math. Phys. Acad. Sci., 10, 161–331 (1785)

    Google Scholar 

  41. Glocker, C.: Set-Valued Force Laws: Dynamics of Non Smooth Systems. Lectures Notes in Applied and Computational Mechanics. Springer, Berlin (2001)

    MATH  Google Scholar 

  42. Rabinowicz, E.: The nature of the static and kinetic coefficients of friction. J. Appl. Phys. 22(11), 1373–1379 (1951)

    Article  Google Scholar 

  43. Olsson, H., Astrom, K.J., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Tech. rep., Department of Automatic Control, Lund Institute of Technology, Lund University (1997)

  44. Stribeck, R.: The key qualities of sliding and roller bearings. Z. Ver. Dtsch. Ing. 46(38,39), 1342–1348, 1432–1437 (1902)

    Google Scholar 

  45. Threlfall, D.C.: The inclusion of coulomb friction in mechanisms programs with particular reference to dram. Mech. Mach. Theory 13, 475–483 (1978)

    Article  Google Scholar 

  46. Rooney, G.T., Deravi, P.: Coulomb friction in mechanism sliding joints. Mech. Mach. Theory 17, 207–211 (1982)

    Article  Google Scholar 

  47. Haug, E.J., Wu, S.C., Yang, S.M.: Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition-deletion theory. Mech. Mach. Theory 21(5) (1986)

  48. Wu, S.C., Yang, S.M., Haug, E.J.: Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition–deletion. II. Planar systems. Mech. Mach. Theory 21(5), 407–416 (1986)

    Article  Google Scholar 

  49. Ambrosio, J.C.: Impact of rigid and flexible multibody systems: deformation description and contact models, vol. II, pp. 15–33 (2002)

  50. Bauchau, O.A., Rodriguez, J.: Modeling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39, 41–63 (2002)

    Article  MATH  Google Scholar 

  51. Canudas de Wit, C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. In: IEEE Transactions on Automatic Control, pp. 419–425 (1995)

    Google Scholar 

  52. Swevers, J., Al-Bender, F., Ganesman, C.G., Prajogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. In: IEEE Transactions on Automatic Control, vol. 45, pp. 675–686 (2000)

    Google Scholar 

  53. Astrom, K.J., Canudas-de-Wit, C.: Revisiting the lugre model: stick–slip motion and rate dependence. In: Proceedings of IEEE Conference on Control Systems, vol. 28, pp. 101–141 (2008)

    Google Scholar 

  54. Canudas de Wit, C., Lischinsky, P.: Adaptive friction compensation with partially known dynamic friction model. Int. J. Adaptive Cont. and Signal Proc. 65–80 (1997)

  55. Flores, P., Ambrosio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Love, A.E.: A treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York (1944)

    MATH  Google Scholar 

  57. Flores, P., Ambrosio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41, 247–261 (2006)

    Article  MATH  Google Scholar 

  58. Flores, P., Ambrosio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contat-impact force model on the dynamic response of multi-body system. Multibody Syst. Dyn. 220, 21–34 (2006)

    Google Scholar 

  59. Muvengei, O., Kihiu, J., Ikua, B.: Effects of input speed on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Int. J. Mech. Mater. Eng. 4, 234–243 (2010)

    Google Scholar 

  60. Heinze, A.: Modelling, simulation and control of a hydraulic crane. Master’s thesis, School of Technology and Design, Munich University of Applied Sciences (2007)

  61. Kermani, M.R., Patel, R.V., Moallem, M.: Friction identification in robotic manipulators: case studies. In: Proceedings of IEEE Conference on Control Applications, pp. 1170–1175 (2005)

    Google Scholar 

Download references

Acknowledgements

This work is part of the ongoing Ph.D. research titled ‘Dynamic Analysis of Flexible Multi-Body Mechanical Systems with Multiple Imperfect Kinematic Joints’. The authors gratefully acknowledge the financial and logistical support of Jomo Kenyatta University of Agriculture and Technology (JKUAT) and the German Academic Exchange Service (DAAD) in carrying out this study.

The advice of Prof. Parviz Nikravesh of University of Arizona during the development of the MATLAB code for kinematic and dynamic analysis of a general planar multi-body mechanical system is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onesmus Muvengei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muvengei, O., Kihiu, J. & Ikua, B. Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst Dyn 28, 369–393 (2012). https://doi.org/10.1007/s11044-012-9309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9309-8

Keywords

Navigation