Skip to main content
Log in

Simulation of rockfall trajectories with consideration of rock shape

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The aim of the paper is to develop a fully 3D simulation technique for rockfall dynamics taking rock shape into account and using the state-of-the-art methods of multibody dynamics and nonsmooth contact dynamics. The rockfall simulation technique is based on the nonsmooth contact dynamics method with hard contact laws. The rock is modeled as an arbitrary convex polyhedron and the terrain model is based on a high resolution digital elevation model. A specialized friction law for rockfall is proposed which allows for the description of scarring behavior (i.e., rocks tend to slide over the terrain before lift-off). The influence of rock geometry on rockfall dynamics is studied through two well-chosen numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems; Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics., vol. 35. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrew, R., Hume, H., Bartingale, R., Rock, A., Zhang, R.: CRSP-3D User’s Manual Colorado Rockfall Simulation Program. Federal Highway Administration. Publication No. FHWA-CFL/TD-12-007 (2012)

  4. Batista, M.: Steady motion of a rigid disk of finite thickness on a horizontal plane. Int. J. Non-Linear Mech. 41, 605–621 (2006)

    Article  MATH  Google Scholar 

  5. Bourrier, F., Dorren, L., Nicot, F., Berger, F., Darve, F.: Toward objective rockfall trajectory simulation using a stochastic impact model. Geomorphology 110(3–4), 68–79 (2009)

    Article  Google Scholar 

  6. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 2nd edn. Communications and Control Engineering Series. Springer, London (1999)

    Book  MATH  Google Scholar 

  7. Canudas de Wit, C., Olsson, H., Åström, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MATH  Google Scholar 

  8. Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell, B., Gerber, W., Deubelbeiss, Y., Feistl, T., Volkwein, A.: Integral hazard management using a unified software environment: numerical simulation tool “RAMMS” for gravitational natural hazards. In: Koboltschnig, G., Hübl, J., Braun, J. (eds.) Proceedings of 12th Congress INTERPRAEVENT, vol. 1, pp. 77–86 (2012)

    Google Scholar 

  9. Christen, M., Kowalski, J., Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63, 1–14 (2010)

    Article  Google Scholar 

  10. Crosta, G., Agliardi, F.: Parametric evaluation of 3D dispersion of rockfall trajectories. Nat. Hazards Earth Syst. Sci. 4, 583–598 (2004)

    Article  Google Scholar 

  11. Dimnet, E., Fremond, M., Gormaz, R., San Martin, J.: Collisions of rigid bodies, deformable bodies and fluids. In: Bathe, K. (ed.) Proceedings of 2nd MIT Conference on Computational Fluid and Solid Mechanics, Vols. 1 and 2, Amsterdam, 17–20 June, pp. 1317–1321. Elsevier/MIT Press, Cambridge (2003)

    Google Scholar 

  12. Dorren, L.: A review of rockfall mechanics and modelling approaches. Prog. Phys. Geogr. 27(1), 69–87 (2003)

    Article  Google Scholar 

  13. Dubois, F., Jean, M., Renouf, M., Mozul, R., Martin, A., Bagneris, M.: LMGC90. In: CSMA 2011 10e Colloque National en Calcul des Structures, May 2011. Presqu’île de Giens, Var (2011)

    Google Scholar 

  14. Frémond, M.: Rigid bodies collisions. Phys. Lett. A 204, 33–41 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A, Solids 18, 653–677 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Giani, G.: Rock Slope Stability Analysis. Balkema, Rotterdam (1992)

    Google Scholar 

  17. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Glocker, C.: Set-Valued Force Laws, Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  19. Glocker, C.: Energetic consistency conditions for standard impacts. Part I. Newton-type inequality impact laws and Kane’s example. Multibody Syst. Dyn. 29, 77–117 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Glocker, C.: Energetic consistency conditions for standard impacts. Part II. Poisson-type inequality impact laws. Multibody Syst. Dyn. (2013). doi:10.1007/s11044-013-9387-2

  21. Glukhikh, Y., Tkhai, V.: Parametric resonance in the problem of a heavy rigid body rolling along a straight line on a plane. Int. J. Appl. Math. Mech. 66(6), 971–984 (2002)

    Article  MathSciNet  Google Scholar 

  22. Guzzetti, F., Crosta, G., Detti, R., Agliardi, F.: STONE: a computer program for the three-dimensional simulation of rock-falls. Comput. Geosci. 28(9), 1079–1093 (2002)

    Article  Google Scholar 

  23. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)

    Article  Google Scholar 

  24. Jean, M.: The non smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 235–257 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  26. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107, 100–103 (1985)

    Article  Google Scholar 

  27. Kenner, R., Phillips, M., Danioth, C., Denier, C., Thee, P., Zgraggen, A.: Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss Alps. Cold Reg. Sci. Technol. 67(3), 157–164 (2011)

    Article  Google Scholar 

  28. Lan, H., Martin, C.D., Lim, C.H.: RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput. Geosci. 33(2), 262–279 (2007)

    Article  Google Scholar 

  29. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  30. Le Hir, C.: Forêt et chutes de blocs: méthodologie de modélisation spatialisée du rôle de protection. Ph.D. thesis, Cemagref/Université de Marne-La-Vallée (2005)

  31. Le Hir, C., Dimnet, E., Berger, F., Dorren, L.: TIN-based 3D deterministic simulation of rockfall taking trees into account. Geophys. Res. Abstr. 8, 04157 (2006)

    Google Scholar 

  32. Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A, Solids 21(5), 869–896 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)

    MATH  Google Scholar 

  34. Leine, R.I., van Campen, D.H., de Kraker, A., van den Steen, L.: Stick-slip vibrations induced by alternate friction models. International Journal of Nonlinear Dynamics and Chaos in Engineering Systems 16(1), 41–54 (1998)

    Article  MATH  Google Scholar 

  35. Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  36. Möller, M.: Consistent integrators for nonsmooth dynamical systems. Ph.D. thesis, ETH, Zurich (2011)

  37. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Non-smooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien (1988)

    Chapter  Google Scholar 

  38. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, London (1988)

    Google Scholar 

  39. Rafiee, A., Vinches, M., Dubois, F.: The non-smooth contact dynamics method applied to the mechanical simulation of a jointed rock mass. In: Proceedings of the 7th EUROMECH Nonlinear Dynamics Conference (ENOC2011), Rome (2011)

    Google Scholar 

  40. Studer, C.: Numerics of Unilateral Contacts and Friction—Modeling and Numerical Time Integration in Non-smooth Dynamics. Lecture Notes in Applied and Computational Mechanics, vol. 47. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  41. Studer, C., Leine, R.I., Glocker, C.: Step size adjustment and extrapolation for time stepping schemes in nonsmooth dynamics. Int. J. Numer. Methods Eng. 76(11), 1747–1781 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L.K.A., Gerber, W., Jaboyedoff, M.: Rockfall characterisation and structural protection—a review. Nat. Hazards Earth Syst. Sci. 11(9), 2617–2651 (2011)

    Article  Google Scholar 

  43. Woltjer, M., Rammer, W., Brauner, M., Seidl, R., Mohren, G.M.J., Lexer, M.J.: Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. J. Environ. Manag. 87(3), 373–388 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The project Multi-body Dynamics of Polygonised 3D Objects with Unilateral Frictional Contact: Application to Rockfall, being a cooperation between the SLF/WSL and the Center of Mechanics (ETH Zurich), has been funded by the Swiss National Science Foundation under project number 200021-119613/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Leine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leine, R.I., Schweizer, A., Christen, M. et al. Simulation of rockfall trajectories with consideration of rock shape. Multibody Syst Dyn 32, 241–271 (2014). https://doi.org/10.1007/s11044-013-9393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9393-4

Keywords

Navigation