Skip to main content
Log in

The simplest 3-, 6- and 8-noded fully-parameterized ANCF plate elements using only transverse slopes

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the simplest kinematical models of triangular plate finite elements using the absolute nodal coordinate formulation (ANCF) are considered. The ANCF is the finite element approach for simulating large displacements and rotations, in which the nodal position vectors and their derivatives are described in the inertial frame only. This leads to linear kinematics of elements, constant mass matrix and simple expressions for inertia terms in the equations of motion. The elastic forces appear in the ANCF in highly nonlinear form due to using the Green–Lagrange strain tensor. This fact compels researchers to find possibilities of reducing the computational complexity in using the ANCF. One of the ways in this direction is to use simplest fully-parameterized plate elements employing transverse slopes only, without using longitudinal slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3#5), 339–348 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dibold, M., Gerstmayr, J., Irschik, H.: On the accuracy and computational costs of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems. In: Proceedings of the IDETC/CIE 2007, ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Paper Number DETC2007-34756, Las Vegas (NV), USA, 4–7 September 2007

    Google Scholar 

  3. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45(1#A), 109–130 (2006)

    Article  MATH  Google Scholar 

  4. Kerkkänen, K., García-Vallejo, D., Mikkola, A.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43(3#2), 239–256 (2006)

    Article  MATH  Google Scholar 

  5. Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31(2#4), 167–195 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Matikainen, M., Dmitrochenko, O., Mikkola, A.: Beam elements with trapezoidal cross-section deformation modes based on the absolute nodal coordinate formulation. In: Proc. of the 8th Int. Conf. of Num. Analysis & Appl. Math., Rhodes, Greece. American Inst. of Physics Conf. Proc., vol. 1281, pp. 1262–1265 (2010)

    Google Scholar 

  7. Dmitrochenko, O., Mikkola, A.: Extended digital nomenclature code for description of complex finite elements and generation of new elements. Mech. Based Des. Struct. Mach. 39(2#5), 229–252 (2011)

    Article  Google Scholar 

  8. Sanborn, G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody Syst. Dyn. 26, 191–211 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dmitrochenko, O., Mikkola, A.: Digital nomenclature code for topology and kinematics of finite elements based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 225(1#3), 34–51 (2011)

    Google Scholar 

  10. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1#3), 53–74 (2004)

    Google Scholar 

  11. Schwab, A., Meijaard, J.: Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of the IDEC/CIE 2005, ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Paper Number DETC2005-85104, Long Beach (CA), USA, 24–28 September 2005

    Google Scholar 

  12. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4#4), 359–384 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kreyszig, E.: Differential Geometry, p. 119. Dover, New York (1991)

    Google Scholar 

  14. Gere, J.M., Timoshenko, S.P.: Mechanics of Materials, 4th edn. PWS, Boston (1997), 912 pp

    Google Scholar 

  15. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26, 245–263 (2011)

    Article  MATH  Google Scholar 

  16. Dmitrochenko, O., Mikkola, A.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4#C), 041012-1-8 (2008)

    Google Scholar 

  17. Matikainen, M.K., von Hertzen, R., Mikkola, A., Gerstmayr, J.: Elimination of high frequencies in the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 224(1#7), 103–116 (2009)

    Google Scholar 

  18. Olshevskiy, A.A., Dmitrochenko, O.N., Lee, S., Kim, C.W.: A triangular plate element 2343 using second-order absolute-nodal-coordinate slopes: numerical computation of shape functions. Nonlinear Dyn. 74(3), 769–781 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dmitrochenko, O., Mikkola, A.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4#C), 041012-1-8 (2008)

    Google Scholar 

  20. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9(3#4), 283–309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dmitrochenko, O.N., Pogorelov, D.Yu.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1#2), 17–43 (2003)

    Article  MATH  Google Scholar 

  22. Matikainen, M.K., Valkeapää, A.I., Mikkola, A.M., Schwab, A.L.: A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. (2013). doi:10.1007/s11044-013-9383-6

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through Korea NRF (2012R1A2A2A04047240 and 2012R1A1A2008870), Defense Acquisition Program Administration and Agency for Defense Development under the contract UD120037CD, and 2012 KU Brain Pool of Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Wan Kim.

Appendices

Appendix A

1.1 A.1 Elements of equations of motion for element 4323

The shape functions for the triangular element 4323 are defined by Eq. (7) for the number of nodes n=3. The shape functions’ matrix S 4323 from Eq. (1) can be formulated as follows:

figure a

where I is the 3×3 identity matrix, and the shape functions \(s_{i,0}^{231}(x,y),\ i = 1, \ldots,3\) are described by Eq. (2).

The element mass matrix M 4323 and generalized vector of gravity forces \(\mathbf{Q}_{4323}^{\mathrm{g}}\), which are constants in the ANCF, are calculated by using Eq. (11) and can be written explicitly as

$$\begin{aligned} &\mathbf{M}^{4323} = \frac{\rho\Delta h}{144} \begin{bmatrix} 2\mathbf{D} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & 2\mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} & 2\mathbf{D} \end{bmatrix} \quad \mbox{and } \end{aligned}$$
(20)
$$\begin{aligned} & \mathbf{Q}_{4323}^{\mathrm{g}} = \frac{\rho g\Delta h}{3}\{ 0,0,\ - 1,0,0,0,0,0,\ - 1,0,0,0,0,0,\ - 1,0,0,0\}^{\mathrm{T}}, \end{aligned}$$
(21)

where D is the 6×6 diagonal matrix in the form D=diag[12,12,12,h 2,h 2,h 2], ρ is the material density, Δ is the element area, and h is the element thickness. For convenience, the mass matrix can be rewritten in a compact form as

$$\mathbf{M}^{4323} = \frac{\rho\Delta h}{144}\mathbf{T}[2,1] \otimes \mathbf{D}, $$

where T is a symmetric Toeplitz matrix constructed by using diagonal values 2 and 1, and the symbol ⊗ represents the Kronecker block matrix product of matrices T and D.

1.2 A.2 Elements of equations of motion for element 4423

The shape functions for the rectangular element 4423 are also defined by Eq. (7) for the number of nodes n=4. The shape functions’ matrix S 4423 can be written explicitly as

where the bilinear shape functions \(s_{i,0}^{241}(x,y), i = 1, \ldots,4\) are determined by Eq. (3).

The mass matrix and the generalized vector of gravity force are

$$\begin{aligned} &\mathbf{M}^{4423} = \frac{\rho abh}{432} \begin{bmatrix} 4\mathbf{D} & 2\mathbf{D} & \mathbf{D} & 2\mathbf{D} \\ 2\mathbf{D} & 4\mathbf{D} & 2\mathbf{D} & \mathbf{D} \\ \mathbf{D} & 2\mathbf{D} & 4\mathbf{D} & 2\mathbf{D} \\ 2\mathbf{D} & \mathbf{D} & 2\mathbf{D} & 4\mathbf{D} \end{bmatrix} \quad \mbox{and } \\ & \mathbf{Q}_{4423}^{\mathrm{g}} = \frac{\rho gabh}{4}\{ 0,0, - 1,0,0,0,0,0, - 1,0,0,0, \ldots,0,0, - 1,0,0,0\}^{\mathrm{T}}. \end{aligned}$$

Again, the mass matrix can be reformulated using a symmetric Toeplitz matrix with diagonal values 4, 2, and 1, and the same matrix D=diag[12,12,12,h 2,h 2,h 2]:

$$\mathbf{M}^{4423} = \frac{\rho abh}{432}\mathbf{T}[4,2,1] \otimes \mathbf{D}. $$

1.3 A.3 Elements of equations of motion for element 6623

The shape functions for the triangular element 6623 are defined by Eq. (7), where n equals 3, and the matrix S 6623 of shape functions from Eq. (1) in explicit form can be formulated as follows:

figure b

where I is the 3×3 unit matrix, and \(s_{i,0}^{261}(x,y), \ i = 1, \ldots,6\) are the triangular shape functions.

The constant mass matrix and constant generalized gravity vector are calculated using Eq. (11):

$$\begin{aligned} \mathbf{M}^{6623}& = \frac{\rho\Delta h}{4320} \begin{bmatrix} 6\mathbf{D} & - \mathbf{D} & - \mathbf{D} & \mathbf{O} & - 4\mathbf{D} & \mathbf{O} \\ & 6\mathbf{D} & - \mathbf{D} & \mathbf{O} & \mathbf{O} & - 4\mathbf{D} \\ & & 6\mathbf{D} & - 4\mathbf{D} & \mathbf{O} & \mathbf{O} \\ & & & 32\mathbf{D} & 16\mathbf{D} & 16\mathbf{D} \\ & \mathrm{sym.} & & & 32\mathbf{D} & 16\mathbf{D} \\ & & & & & 32\mathbf{D} \end{bmatrix} , \\ \mathbf{Q}_{6623}^{\mathrm{g}}& = \rho g\Delta h \biggl\{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, - \frac{1}{3},0,0,0,0,0, \\ &\quad- \frac{1}{3},0,0,0,0,0, - \frac{1}{3},0,0,0\biggr\} ^{\mathrm{T}}, \end{aligned}$$

where D is the 6×6 diagonal matrix of the form shown above, and O is the 6×6 zero matrix.

1.4 A.4 Elements of equations of motion for element 8823

The shape functions for the triangular element 8823 are defined by Eq. (7), where n equals 8, and the matrix S 8823 of shape functions from Eq. (1) in explicit form can be formulated as follows:

where I is the 3×3 unit matrix, and \(s_{i,0}^{281}(x,y), i = 1, \ldots,8\) are the shape functions. The constant mass matrix and constant generalized gravity vector are calculated using Eq. (11):

$$\begin{aligned} &\mathbf{M}^{8823} = \frac{\rho abh}{2160} \begin{bmatrix} 6\mathbf{D} & 2\mathbf{D} & 3\mathbf{D} & 2\mathbf{D} & - 6\mathbf{D} & - 8\mathbf{D} & - 8\mathbf{D} & - 6\mathbf{D} \\ & 6\mathbf{D} & 2\mathbf{D} & 3\mathbf{D} & - 6\mathbf{D} & - 6\mathbf{D} & - 8\mathbf{D} & - 8\mathbf{D} \\ & & 6\mathbf{D} & 2\mathbf{D} & - 8\mathbf{D} & - 6\mathbf{D} & - 6\mathbf{D} & - 8\mathbf{D} \\ & & & 6\mathbf{D} & - 8\mathbf{D} & - 8\mathbf{D} & - 6\mathbf{D} & - 6\mathbf{D} \\ & & & & 32\mathbf{D} & 20\mathbf{D} & 16\mathbf{D} & 20\mathbf{D} \\ & \mathrm{sym}. & & & & 32\mathbf{D} & 20\mathbf{D} & 16\mathbf{D} \\ & & & & & & 32\mathbf{D} & 20\mathbf{D} \\ & & & & & & & 32\mathbf{D} \end{bmatrix} , \\ & \mathbf{Q}_{8823}^{\mathrm{g}} = \rho g\Delta h \biggl\{ \underbrace{0,0,\frac{ - 1}{12},0,0,0, \ldots,}_{4\ \text{times}}\underbrace{0,0, \frac{ - 1}{3},0,0,0, \ldots}_{4\ \text{times}}\biggr\} ^{\mathrm{T}}. \end{aligned}$$

Appendix B: Cantilever beam subjected to large deflection

Tables 3 and 4 show the relative error in calculation of the vertical and horizontal deflection components, respectively, for the benchmark static problem described in Sect. 4.1. In these tables, p=Pl 2/EI is the force factor, the column ‘E.P.’ contains solution of the Euler’s Elastica problem, N is the number of elements along the beam length.

Table 3 Vertical deflection of the cantilever beam’s free end for different element types
Table 4 Horizontal deflection of the cantilever beam’s free end for different element types

Appendix C: Cantilever beam subjected the action of a bending moment

Tables 5 and 6 show the values of deflection of the free-end of a cantilever beam calculated using elements 6623 and 4423. The results are compared to the analytical solution. The relative error is presented in Tables 7 and 8.

Table 5 Vertical displacements and rotations of the plate’s points for the element 6623
Table 6 Vertical displacements and rotations of the plate’s points for the element 4423
Table 7 Error in vertical displacements and rotations of the plate’s points for the element 4423
Table 8 Error in vertical displacements and rotations of the plate’s points for the element 6623

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olshevskiy, A., Dmitrochenko, O., Dai, M.D. et al. The simplest 3-, 6- and 8-noded fully-parameterized ANCF plate elements using only transverse slopes. Multibody Syst Dyn 34, 23–51 (2015). https://doi.org/10.1007/s11044-014-9411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9411-1

Keywords

Navigation