Skip to main content
Log in

A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The constraint violation problem of spatial multibody systems is analyzed in this paper. The mass matrix is singular in the equations of motion when the Euler parameters with the normalization constraints are used to describe the orientation of the spatial rigid body. The constrained and weighted least-squares-based geometrical projection method is implemented to suppress the constraint violation during numerical integration, and the explicit correction formulation can be obtained by the block matrix inversion scheme. The mass matrix weighted correction formulation gives the physically consistent energy norm, but it needs the mass matrix to be positive definite. To extend the physically consistent correction formulation for solving spatial multibody systems’ constraint violation problems with a singular mass matrix, a Modified Mass-Orthogonal Projection Method (MMOPM) and a Generalized Physical Orthogonal Projection Method (GPOPM) are proposed. MMOPM modifies the mass matrix directly by adding a penalty factor matrix which appears in the mass-orthogonal projection method and leads to a positive definite weight matrix that satisfies the block matrix inversion scheme condition. GPOPM is a generalization of the physical orthogonal projection method where the constrained least-squares method is weighted by the positive semi-definite mass matrix and the correction formulation is given by using the generalized block matrix inversion scheme. Numerical results show the feasibility and accuracy of the presented MMOPM and GPOPM. The constraints in position and velocity can reach machine precision during numerical integration. The elimination of violation of position constrains may require few iterations, while the violation of velocity constraints is removed in one step, and GPOPM is more accurate in velocity correction than MMOPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2007). doi:10.1115/1.2803257

    Article  Google Scholar 

  2. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2007). doi:10.1115/1.2803258

    Article  Google Scholar 

  3. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems V.1: Basic Methods. Allyn & Bacon, Boston (1989)

    Google Scholar 

  4. Jalon, J.G.D., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  5. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, vol. 45. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  6. Von Schwerin, R.: Multibody System Simulation: Numerical Methods, Algorithms, and Software, vol. 7. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  7. Simeon, B.: MBSPACK-numerical integration software for constraines mechanical motion. Surv. Math. Ind. 5, 169–202 (1995)

    MATH  MathSciNet  Google Scholar 

  8. Terze, Z., Naudet, J.: Geometric properties of projective constraint violation stabilization method for generally constrained multibody systems on manifolds. Multibody Syst. Dyn. 20(1), 85–106 (2008). doi:10.1007/s11044-008-9107-5

    Article  MATH  MathSciNet  Google Scholar 

  9. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Math. 1(1), 1–16 (1972). doi:10.1016/0045-7825(72)90018-7

    MATH  MathSciNet  Google Scholar 

  10. Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2010). doi:10.1115/1.4002338

    Article  Google Scholar 

  11. Park, K.C., Chiou, J.C.: Stabilization of computational procedures for constrained dynamical systems. J. Guid. Control Dyn. 11(4), 365–370 (1988). doi:10.2514/3.20320

    Article  MATH  MathSciNet  Google Scholar 

  12. Park, K.C., Chiou, J.C., Downer, J.D.: Explicit-implicit staggered procedure for multibody dynamics analysis. J. Guid. Control Dyn. 13(3), 562–570 (1990). doi:10.2514/3.25370

    Article  MATH  MathSciNet  Google Scholar 

  13. Bayo, E., Garcia De Jalon, J., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Math. 71(2), 183–195 (1988). doi:10.1016/0045-7825(88)90085-0

    MATH  MathSciNet  Google Scholar 

  14. Bayo, E., Avello, A.: Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics. Nonlinear Dyn. 5(2), 209–231 (1994). doi:10.1007/bf00045677

    Google Scholar 

  15. Braun, D.J., Goldfarb, M.: Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Comput. Methods Appl. Math. 198(37–40), 3151–3160 (2009). doi:10.1016/j.cma.2009.05.013

    MATH  MathSciNet  Google Scholar 

  16. Blajer, W.: Methods for constraint violation suppression in the numerical simulation of constrained multibody systems—a comparative study. Comput. Methods Appl. Math. 200(13–16), 1568–1576 (2011). doi:10.1016/j.cma.2011.01.007

    MATH  MathSciNet  Google Scholar 

  17. Lubich, C.: Extrapolation integrators for constrained multibody systems. Impact Comput. Sci. Eng. 3(3), 213–234 (1991). doi:10.1016/0899-8248(91)90008-I

    Article  MATH  MathSciNet  Google Scholar 

  18. Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30(5), 1467–1482 (1993). doi:10.1137/0730076

    Article  MATH  MathSciNet  Google Scholar 

  19. Andrzejewski, T., Bock, H.: Recent advances in the numerical integration of multibody systems. In: Schiehlen, W. (ed.) Advanced Multibody System Dynamics. Solid Mechanics and Its Applications, vol. 20, pp. 127–151. Springer, The Netherlands (1993)

    Chapter  Google Scholar 

  20. Yoon, S., Howe, R.M., Greenwood, D.T.: Geometric elimination of constraint violations in numerical simulation of Lagrangian equations. J. Mech. Des. 116(4), 1058–1064 (1994). doi:10.1115/1.2919487

    Google Scholar 

  21. Yu, Q., Chen, I.M.: A direct violation correction method in numerical simulation of constrained multibody systems. Comput. Mech. 26(1), 52–57 (2000). doi:10.1007/s004660000149

    Article  MATH  Google Scholar 

  22. Aghili, F., Piedbœuf, J.-C.: Simulation of motion of constrained multibody systems based on projection operator. Multibody Syst. Dyn. 10(1), 3–16 (2003). doi:10.1023/a:1024584323751

    Article  MATH  MathSciNet  Google Scholar 

  23. Blajer, W.: A geometric unification of constrained system dynamics. Multibody Syst. Dyn. 1(1), 3–21 (1997). doi:10.1023/a:1009759106323

    Article  MATH  MathSciNet  Google Scholar 

  24. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7(3), 265–284 (2002). doi:10.1023/a:1015285428885

    Article  MATH  MathSciNet  Google Scholar 

  25. Nikravesh, P.: Initial condition correction in multibody dynamics. Multibody Syst. Dyn. 18(1), 107–115 (2007). doi:10.1007/s11044-007-9069-z

    Article  MATH  MathSciNet  Google Scholar 

  26. Terze, Z., Lefeber, D., Muftić, O.: Null space integration method for constrained multibody systems with no constraint violation. Multibody Syst. Dyn. 6(3), 229–243 (2001). doi:10.1023/a:1012090712309

    Article  MATH  Google Scholar 

  27. Terze, Z., Naudet, J.: Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems. Multibody Syst. Dyn. 24(2), 203–218 (2010). doi:10.1007/s11044-010-9195-x

    Article  MATH  MathSciNet  Google Scholar 

  28. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9(1–2), 113–130 (1996). doi:10.1007/bf01833296

    Article  MathSciNet  Google Scholar 

  29. Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259–280 (1997). doi:10.1023/a:1009754006096

    Article  MATH  MathSciNet  Google Scholar 

  30. Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8(2), 141–159 (2002). doi:10.1023/a:1019581227898

    Article  MATH  Google Scholar 

  31. García Orden, J.: Energy considerations for the stabilization of constrained mechanical systems with velocity projection. Nonlinear Dyn. 60(1–2), 49–62 (2010). doi:10.1007/s11071-009-9579-8

    Article  MATH  Google Scholar 

  32. García Orden, J., Conde Martín, S.: Controllable velocity projection for constraint stabilization in multibody dynamics. Nonlinear Dyn. 68(1–2), 245–257 (2012). doi:10.1007/s11071-011-0224-y

    Article  MATH  Google Scholar 

  33. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A, Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006). doi:10.1098/rspa.2006.1662

    Article  MATH  MathSciNet  Google Scholar 

  34. García de Jalón, J., Gutiérrez-López, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst. Dyn. 30(3), 311–341 (2013). doi:10.1007/s11044-013-9358-7

    Article  MATH  MathSciNet  Google Scholar 

  35. Haghshenas-Jaryani, M., Bowling, A.: A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems. Multibody Syst. Dyn. 30(2), 185–197 (2013). doi:10.1007/s11044-012-9333-8

    Article  MathSciNet  Google Scholar 

  36. Vlasenko, D., Kasper, R.: Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates. Multibody Syst. Dyn. 22(3), 297–319 (2009). doi:10.1007/s11044-009-9167-1

    Article  MATH  MathSciNet  Google Scholar 

  37. Schwab, A., Meijaard, J.: How to draw Euler angles and utilize Euler parameters. In: ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2006, pp. 259–265 (2006). American Society of Mechanical Engineers

    Google Scholar 

  38. Mariti, L., Belfiore, N.P., Pennestrì, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637–656 (2011). doi:10.1002/nme.3190

    Article  MATH  Google Scholar 

  39. Nikravesh, P.: Some methods for dynamic analysis of constrained mechanical systems: a survey. In: Haug, E. (ed.) Computer Aided Analysis and Optimization of Mechanical System Dynamics. NATO ASI Series, vol. 9, pp. 351–368. Springer, Berlin (1984)

    Chapter  Google Scholar 

  40. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond., Math. Phys. Sci. 439(1906), 407–410 (1992). doi:10.2307/52227

    Article  MATH  MathSciNet  Google Scholar 

  41. de Falco, D., Pennestrì, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009). doi:10.1061/(ASCE)0893-1321(2009)22:4(365)

    Article  Google Scholar 

  42. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  43. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations, vol. 56. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  44. Steeves, E.C., Walton, W.: A new matrix theorem and its application for establishing independent coordinates for complex dynamical systems with constraints. NASA Technical Report TR R-326 (1969)

  45. Youngjin, C., Joono, C.: New expressions of 2×2 block matrix inversion and their application. IEEE Trans. Autom. Control 54(11), 2648–2653 (2009). doi:10.1109/tac.2009.2031568

    Article  Google Scholar 

  46. McPhee, J., Shi, P., Piedbuf, J.C.: Dynamics of multibody systems using virtual work and symbolic programming. Math. Comput. Model. Dyn. Syst. 8(2), 137–155 (2002). doi:10.1076/mcmd.8.2.137.8591

    Article  MATH  Google Scholar 

  47. Uchida, T., Vyasarayani, C.P., Smart, M., McPhee, J.: Parameter identification for multibody systems expressed in differential-algebraic form. Multibody Syst. Dyn. 31(4), 393–403 (2014). doi:10.1007/s11044-013-9390-7

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Project No. 91016026) and National Natural Science Foundation of China (Project No. 11302023). The authors express thanks to anonymous referees for their valuable comments and suggestions, which led to a significant improvement over an early version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, D. & Liu, Y. A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix. Multibody Syst Dyn 36, 87–110 (2016). https://doi.org/10.1007/s11044-015-9458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9458-7

Keywords

Navigation