Skip to main content
Log in

A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Virtually all machines and mechanisms use mechanical joints that are not perfect from the kinematic point of view and for which tolerances, in the fitting of their components, are specified. Together with such controlled clearances, mechanical joints may require the use of bushing elements, such as those used in vehicle suspensions. Furthermore, in many situations the joints exhibit limits (stops) in their translational or rotational motion that have to be taken into account when modeling them. The dynamic response of the mechanical systems that use such realistic mechanical joints is largely dependent on their characteristic dimensions and material properties of the compliant elements, implying that correct models of these systems must include realistic models of the bushing/clearance joints and of the joint stops. Several works addressed the modeling of imperfect joints to account for the existence of clearances and bushings, generally independently of the formulation of the perfect kinematic joints. This work proposes a formulation in which both perfect and clearance/bushing joints share the same kinematic information making their modeling data similar and enabling their easy permutation in the context of multibody systems modeling. The proposed methodology is suitable for the most common mechanical joints and easily extended to many other joint types benefiting the exploration of a wide number of modeling applications, including the representation of cut-joints required for some formulations in multibody dynamics. The formulation presented in this work is applied to several demonstrative examples of spatial mechanisms to show the need to consider the type of imperfect joints and/or joints with stops modeling in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Akhadkar, N., Acary, V., Brogliato, B.: Analysis of collocated feedback controllers for four-bar planar mechanisms with joint clearances. Multibody Syst. Dyn. 38(2), 101–136 (2016). https://doi.org/10.1007/s11044-016-9523-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody Syst. Dyn. (2017). https://doi.org/10.1007/s11044-017-9584-5

    Google Scholar 

  3. Ambrosio, J., Verissimo, P.: Improved bushing models for vehicle dynamics. Multibody Syst. Dyn. 22(4), 341–365 (2009)

    Article  MATH  Google Scholar 

  4. Ambrosio, J., Malça, C., Ramalho, A.: Planar roller chain drive dynamics using a cylindrical contact force model. Mech. Based Des. Struct. Mach. 44(1–2), 109–122 (2015). https://doi.org/10.1080/15397734.2015.1087319

    Google Scholar 

  5. Ambrosio, J., Pombo, J.: MUltiBOdy Dynamic analysis program—MUBODyn: User’s Manual. Technical Report IDMEC-CPM, Instituto de Engenharia Mecânica, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal (2016)

  6. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Abdallah, M.A., Khemili, I., Aifaoui, N.: Numerical investigation of a flexible slider–crank mechanism with multijoints with clearance. Multibody Syst. Dyn. 38(2), 173–199 (2016). https://doi.org/10.1007/s11044-016-9526-7

    Article  Google Scholar 

  8. Bozzone, M., Pennestrì, E., Salvini, P.: A lookup table-based method for wheel–rail contact analysis. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 225(2), 127–138 (2011). https://doi.org/10.1177/2041306810394721

    MATH  Google Scholar 

  9. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  10. Brutti, C., Coglitore, G., Valentini, P.: Modeling 3D revolute joint with clearance and contact stiffness. Nonlinear Dyn. 66(4), 531–548 (2011)

    Article  Google Scholar 

  11. Dubowsky, S.: On predicting the dynamic effects of clearances in planar mechanisms. J. Eng. Ind., Ser. B 96(1), 317–323 (1974)

    Article  Google Scholar 

  12. Dubowsky, S., Gardner, T.N.: Design and analysis of multilink flexible mechanism with multiple clearance connections. J. Eng. Ind., Ser. B 99(1), 88–96 (1977)

    Article  Google Scholar 

  13. Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  14. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–18), 1359–1369 (2004)

    Article  Google Scholar 

  15. Flores, P., Ambrosio, J., Claro, J., Lankarani, H.: Spatial revolute joints with clearances for dynamic analysis of multi-body systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 220(4), 257–271 (2006). https://doi.org/10.1243/1464419JMBD70

    Google Scholar 

  16. Flores, P., Ambrósio, J., Pimenta Claro, J., Lankarani, H.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  17. Flores, P., Ambrosio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010). https://doi.org/10.1007/s11044-010-9209-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010). https://doi.org/10.1007/s11044-009-9178-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Flores, P., Lankarani, H.: Contact Force Models for Multibody Dynamics. Springer, Dordrecht (2016)

    Book  Google Scholar 

  20. Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14(2), 137–154 (2005). https://doi.org/10.1007/s11044-005-0725-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Gear, G.: Numerical simulation of differential-algebraic equations. IEE Transl. Circuit Theory CT-18, 89–95 (1981)

    Google Scholar 

  22. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005). https://doi.org/10.1007/s11044-005-2519-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Grant, S.J., Fawcett, J.N.: Effects of clearance at the coupler-rocker bearing of a 4-bar linkage. Mech. Mach. Theory 14, 99–110 (1979)

    Article  Google Scholar 

  24. Gummer, A., Sauer, B.: Modeling planar slider–crank mechanisms with clearance joints in RecurDyn. Multibody Syst. Dyn. 31(2), 127–145 (2014). https://doi.org/10.1007/s11044-012-9339-2

    Article  Google Scholar 

  25. Gupta, P.K.: Advanced Dynamics of Rolling Elements. Springer, Heidelberg (1984)

    Book  Google Scholar 

  26. Haines, R.S.: An experimental investigation into the dynamic behaviour of revolute joints with varying degrees of clearance. Mech. Mach. Theory 20(3), 221–231 (1985)

    Article  Google Scholar 

  27. Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12(4), 345–362 (2004). https://doi.org/10.1007/s11044-004-2513-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Lankarani, H., Nikravesh, P.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  29. Ledesma, R., Ma, Z., Hulbert, G., Wineman, A.: A nonlinear viscoelastic bushing element in multi-body dynamics. Comput. Mech. 17, 287–296 (1996)

    Article  MATH  Google Scholar 

  30. Li, P., Chen, W., Li, D., et al.: A novel transition model for lubricated revolute joints in planar multibody systems. Multibody Syst. Dyn. 36(3), 279–294 (2016). https://doi.org/10.1007/s11044-015-9484-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Lopes, D.S., Silva, M.T., Ambrosio, J.A.: Tangent vectors to a 3-d surface normal: a geometric tool to find orthogonal vectors based on the householder transformation. Comput. Aided Des. 45(3), 683–694 (2013). https://doi.org/10.1016/j.cad.2012.11.003

    Article  MathSciNet  Google Scholar 

  32. Machado, M., Flores, P., Ambrosio, J.: A lookup-table-based approach for spatial analysis of contact problems. J. Comput. Nonlinear Dyn. 9(4), 041010 (2014). https://doi.org/10.1115/1.4026894

    Article  Google Scholar 

  33. Magalhaes, H., Ambrosio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 230(3), 251–267 (2016). https://doi.org/10.1177/1464419315608275

    Google Scholar 

  34. Marques, F., Flores, P., Pimenta Claro, J., Lankarani, H.M.: Survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. (2016). https://doi.org/10.1007/s11071-016-2999-3

    MathSciNet  Google Scholar 

  35. Masoudi, R., Uchida, T., Vilela, D., Luaces, A., Cuadrado, J., McPhee, J.: A library of computational benchmark problems for the multibody dynamics community. In: Terze, Z. (ed.) Proceedings of ECCOMAS Multibody Dynamics 2013, 1–4 July, University of Zagreb, Croatia, pp. 1153–1162 (2013)

    Google Scholar 

  36. Mazhar, H., Heyn, T., Negrut, D.: A scalable parallel method for large collision detection problems. Multibody Syst. Dyn. 26(1), 37–55 (2011). https://doi.org/10.1007/s11044-011-9246-y

    Article  MATH  Google Scholar 

  37. Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  38. Park, J., Nikravesh, P.: Effect of steering-housing rubber bushings on the handling responses of a vehicle. SAE Trans. J. Passeng. Cars 106(6), 76–86 (1998)

    Google Scholar 

  39. Pereira, C., Ramalho, A., Ambrosio, J.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63(4), 681–697 (2011)

    Article  Google Scholar 

  40. Pereira, C., Ramalho, A., Ambrosio, J.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.04.021

    Article  Google Scholar 

  41. Pereira, C., Ramalho, A., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35(3), 277–298 (2015). https://doi.org/10.1007/s11044-015-9463-x

    Article  MATH  Google Scholar 

  42. Pombo, J., Ambrósio, J.: General spatial curve joint for rail guided vehicles: kinematics and dynamics. Multibody Syst. Dyn. 9(3), 237–264 (2003)

    Article  MATH  Google Scholar 

  43. Pombo, J., Ambrósio, J., Silva, M.: A new wheel–rail contact model for railway dynamics. Veh. Syst. Dyn. 45(2), 165–189 (2007)

    Article  Google Scholar 

  44. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998)

    Article  MATH  Google Scholar 

  45. Robuschi, N., Braghin, F., Corigliano, A., Ghisi, A., Tasora, A.: On the dynamics of a high frequency oscillator for mechanical watches. Mech. Mach. Theory 117, 276–293 (2017)

    Article  Google Scholar 

  46. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37, 895–913 (2002)

    Article  MATH  Google Scholar 

  47. Soong, K., Thompson, B.S.: A theoretical and experimental investigation of the dynamic response of a slider–crank mechanism with radial clearance in the gudgeon-pin joint. J. Mech. Des. 112, 183–189 (1990)

    Article  Google Scholar 

  48. Tandl, M., Kecskemethy, A.: Singularity-free trajectory tracking with Frenet frames. In: Husty, M., Schroeker, H-P. (eds.) Proceedings of the 1st Conference EuCoMeS. Obergurgl, Austria (2006)

    Google Scholar 

  49. Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)

    Article  MathSciNet  Google Scholar 

  50. Vieira, R.: High Speed Train Pantograph Models Identification. M.Sc. Thesis, Instituto Superior Tecnico, University of Lisbon, Lisbon, Portugal (2016)

  51. Yaqubi, S., Dardel, M., Daniali, H.M., et al.: Modeling and control of crank–slider mechanism with multiple clearance joints. Multibody Syst. Dyn. 36(2), 143–167 (2016). https://doi.org/10.1007/s11044-015-9486-3

    Article  MathSciNet  MATH  Google Scholar 

  52. Yan, S., Xiang, W., Zhang, L.: A comprehensive model for 3D revolute joints with clearances in mechanical systems. Nonlinear Dyn. 80(1), 309–328 (2015)

    Article  Google Scholar 

  53. Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multibody Syst. Dyn. 38(4), 367–389 (2016). https://doi.org/10.1007/s11044-015-9474-7

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by FCT, through IDMEC, under LAETA, project UID/EMS/ 50022/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ambrósio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrósio, J., Pombo, J. A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst Dyn 42, 317–345 (2018). https://doi.org/10.1007/s11044-018-9613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-9613-z

Keywords

Navigation