Skip to main content
Log in

Sophisticated but quite simple contact calculation for handling tire models

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Handling tire models like Pacejka (Tire and Vehicle Dynamics, 3rd edn., Elsevier, Amsterdam, 2012) or TMeasy (Rill in Proc. of the XV Int. Symp. on Dynamic Problems of Mechanics, Buzios, RJ, Brazil, 2013) consider the contact patch as one coherent plane. As a consequence, the irregularities of a rough road profile must be approximated by an appropriate local road plane that serves as an effective road plane in order to calculate the geometric contact point and the corresponding contact velocities. The Pacejka/SWIFT tire model employs a road enveloping model that generates the effective height and slope by elliptical cams. TMeasy just uses four representative road points for that purpose. In addition, TMeasy replaces the geometric contact point by the static contact point and shifts it finally to the dynamic contact point that represents the point where the contact forces are applied. In doing so, a rather sophisticated but still simple contact calculation is possible. Simulations obtained with a virtual tire test rig and fully nonlinear three-dimensional multibody system models of a motor-scooter and a passenger car demonstrate the potential of this contact approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Listing 1
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Rill, G., Salg, D., Wilks, E.: Improvement of dynamic wheel loads and ride quality of heavy agricultural tractors by suspending front axles. In: Cebon, D., Mitchell, C. (eds.) Heavy Vehicles and Roads, Thomas Telford, London (1992)

    Google Scholar 

  2. Rill, G.: In: Simulation von Kraftfahrzeugen, Vieweg, Braunschweig (1994)

    Google Scholar 

  3. Hirschberg, W., Rill, G., Weinfurter, H.: User-appropriate tyre-modeling for vehicle dynamics in standard and limit situations. Veh. Syst. Dyn. 38(2), 103–125 (2002)

    Article  Google Scholar 

  4. Rill, G.: First order tire dynamics. In: Proceedings of the III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering, Lisbon, Portugal (2006)

    Google Scholar 

  5. Hirschberg, W., Rill, G., Weinfurter, H.: Tire model TMeasy. Veh. Syst. Dyn. 45(S1), 101–119 (2007)

    Article  Google Scholar 

  6. Hirschberg, W., Palacek, F., Rill, G., Sotnik, J.: Reliable vehicle dynamics simulation in spite of uncertain input data. In: Proceedings of 12th EAEC European Automotive Congress, Bratislava (2009)

    Google Scholar 

  7. Rill, G., Hirschberg, W.: Dynamic tire forces with smooth transition to stand-still. In: Ambrosio, J.A.C., Silva, M.P.T. (eds.) 7th EUROMECH Solid Mechanics Conference, September 2009

    Google Scholar 

  8. Rill, G.: Road Vehicle Dynamics—Fundamentals and Modeling. Taylor & Francis, Boca Raton (2011)

    Book  Google Scholar 

  9. Rill, G.: TMeasy—the handling tire model for all driving situations. In: Savi, M.A. (ed.) Proc. of the XV Int. Symp. on Dynamic Problems of Mechanics, Buzios, RJ, Brazil (2013)

    Google Scholar 

  10. Rill, G.: TMeasy—a handling tire model based on a three-dimensional slip approach. In: Zhang, W., Gong, M. (eds.) Proceedings of the XXIII International Symposium on Dynamic of Vehicles on Roads and on Tracks, Quingdao (2013)

    Google Scholar 

  11. Rill, G.: An engineer’s guess on tyre parameter made possible with TMeasy. In: Gruber, P., Sharp, R.S. (eds.) Proceedings of the 4th International Tyre Colloquium, Surrey, GB (2015)

    Google Scholar 

  12. Mastinu, G., Manfred Ploechl, M. (eds.): Road and Off-Road Vehicle System Dynamics Handbook. CRC Press, Boca Raton (2017)

    Google Scholar 

  13. https://www.tesis-dynaware.com/news/tmeasy-echtzeitfaehiges-reifenmodell-fuer-fahrdynamik-tests.html (last access: 22.09.2017)

  14. http://www.simpack.com/mbs-software-product-automotive.html (last access: 22.09.2017)

  15. Van Oosten, J.J.M., et al.: Tydex workshop, standardisation of data exchange in tyre testing and tyre modelling. In: Proceedings of the 2nd International Colloquium on Tyre Models for Vehicle Dynamic Analysis. Swets en Zeitlinger, Lisse (1997)

    Google Scholar 

  16. Pajejka, H.: Tire and Vehicle Dynamics, 3rd edn. Elsevier, Amsterdam (2012)

    Google Scholar 

  17. Weinfurter, H., Hirschberg, W., Hipp, E.: Entwicklung einer Störgrößenkompensation für Nutzfahrzeuge mittels Steer-by-Wire durch Simulation (Design of a Disturbance Compensation for Commercial Vehicles based on Steer-by-Wire by Simulation). In: Berechnung und Simulation im Fahrzeugbau. VDI-Bericht, vol. 1846, pp. 923–941. VDI Verlag GmbH, Düsseldorf (2004)

    Google Scholar 

  18. Blundell, M., Harty, D.: The Multibody System Approach to Vehicle Dynamics. Elsevier Butterworth–Heinemann, Oxford (2004)

    Google Scholar 

  19. Rill, G., Chucholowski, C.: A modeling technique for fast computer simulations of configurable vehicle systems. In: Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (ICTAM), Warsaw, Poland (2004)

    Google Scholar 

  20. Rill, G.: Vehicle modeling by non-perfect multibody systems. In: Eberhard, P., Ziegler, P. (eds.) Proceedings of the IMSD2012—2nd Joint International Conference on Multibody System Dynamics, Stuttgart (2012)

    Google Scholar 

  21. Rill, G., Chucholowski, C.: Real time simulation of large vehicle systems. In: Proceedings of ECCOMAS Multibody Dynamics, Milano, Italy (2007)

    Google Scholar 

  22. Rill, G.: Demands on vehicle modeling. In: Anderson, R. (ed.) The Dynamics of Vehicles on Roads and on Tracks. Swets Zeitlinger, Amsterdam (1989)

    Google Scholar 

  23. ISO 8608:2016 Mechanical vibration—Road surface profiles—Reporting of measured data

  24. Van der Jagt, P.: The Road to Virtual Vehicle Prototyping, New CAE-Models for Accelerated Vehicle Dynamics Development, ISBN 90-386-2552-9, NUGI 834, Tech. Univ. Eindhoven (2000)

  25. Rill, G., Schaeffer, Th.: Grundlagen und Methodik der Mehrkörpersimulation (3. Aufl.). Springer, Wiesbaden (2017)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Rill.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rill, G. Sophisticated but quite simple contact calculation for handling tire models. Multibody Syst Dyn 45, 131–153 (2019). https://doi.org/10.1007/s11044-018-9629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-9629-4

Keywords

Navigation