Skip to main content
Log in

Multivariable backward-shift-invariant subspaces and observability operators

  • Original Article
  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

It is well known that subspaces of the Hardy space over the unit disk which are invariant under the backward shift occur as the image of an observability operator associated with a discrete-time linear system with stable state-dynamics, as well as the functional-model space for a Hilbert space contraction operator. We discuss two multivariable extensions of this structure, where the classical Hardy space is replaced by (1) the Fock space of formal power series in a collection of d noncommuting indeterminates with norm-square-summable vector coefficients, and (2) the reproducing kernel Hilbert space (often now called the Arveson space) over the unit ball in \({\mathbb{C}^{d}}\) with reproducing kernel \({k(\lambda, \zeta) = 1/(1 - \langle \lambda, \zeta \rangle) (\lambda, \zeta \in \mathbb{C}^{d} with \| \lambda \|, \| \zeta \| < 1}\)). In the first case, the associated linear system is of noncommutative Fornasini–Marchesini type with evolution along a free semigroup with d generators, while in the second case the linear system is a standard (commutative) Fornasini–Marchesini-type system with evolution along the integer lattice \({\mathbb{Z}^{d}}\) . An abelianization map (or symmetrization of the Fock space) links the first case with the second. The second case has special features depending on whether the operator-tuple defining the state dynamics is commutative or not. The paper focuses on multidimensional state-output linear systems and the associated observability operators; followup papers Ball, Bollotnikov, and Fang (2007a, 2007b) use the results here to extend the analysis to represent observability-operator ranges as reproducing kernel Hilbert spaces with reproducing kernels constructed from the transfer function of a conservative multidimensional (noncommutative or commutative) input-state-output linear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Agler J., McCarthy J.E. (2002). Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, Volume 44, Providence: American Mathematical Society.

  • Alpay D., Dijksma A., Rovnyak J. (2003). A theorem of Beurling-Lax type for Hilbert spaces of functions analytic in the unit ball. Integral Equations and Operator Theory 47(3): 251–274

    Article  MATH  MathSciNet  Google Scholar 

  • Alpay D., Dubi C. (2005). On commuting operators solving Gleason’s problem. Proceedings of the American Mathematical Society 133(11): 3285–3293

    Article  MATH  MathSciNet  Google Scholar 

  • Ambrozie C.-G., Engliš M., Müller V. (2002). Operator tuples and analytic models over general domains in \({\mathbb{C}^{n}}\) . Jounrnal of the Operator Theory 47, 287–302

    MATH  Google Scholar 

  • Arazy J., Engliš M. (2003). Analytic models for commuting operator tuples on bounded symmetric domains. Transactions of the American Mathematical Society 355(2): 837–864

    Article  MATH  MathSciNet  Google Scholar 

  • Arias A., Popescu G. (2000). Non-commutative interpolation and Poisson transforms. Israel Journal of Mathematics 115, 205–234

    MATH  MathSciNet  Google Scholar 

  • Arveson W. (1998). Subalgebras of C * algebras III: Multivariable operator theory. Acta Mathematica 181, 159–228

    Article  MATH  MathSciNet  Google Scholar 

  • Arveson W. (2000). The curvature invariant of a Hilbert module over \({{\mathbb{C}[z_{1}, \dots, z_{d}]}}\) . Journal für die Reine und Angewandte Mathematik 522, 173–236

    Article  MATH  MathSciNet  Google Scholar 

  • Ball J.A., Bolotnikov V., & Fang Q. (2007a). Transfer-function realization for multipliers of the Arveson space. Journal of Mathematical Analysis and Applications, (to appear).

  • Ball J.A., Bolotnikov V., & Fang Q. (2007b). Schur-class multipliers on the Fock space: de Branges-Rovnyak reproducing kernel spaces and transfer-function realizations, in Teberiu Constantinescu Memorial Volume, Bucharest: Theta (to appear).

  • Ball J.A., Groenewald G., Malakorn T. (2005). Structured noncommutative multidimensional linear system. SIAM Journal on Control and Optimization 44(4): 1474–1528

    Article  MATH  MathSciNet  Google Scholar 

  • Ball J.A., Groenewald G., & Malakorn T. (2006). Conservative structured noncommutative multidimensional linear systems. In D. Alpay & I. Gohberg (Eds.), The state space method: Generalizations and applications. (pp. 179–223), OT 161. Basel: Birkhäuser.

  • Ball J.A., Kriete T.L. (1987). Operator-valued Nevanlinna-Pick kernels and the functional models for contraction operators. Integral Equations and Operator Theory 10(1): 17–61

    Article  MATH  MathSciNet  Google Scholar 

  • Ball J.A., Sadosky C., Vinnikov V. (2005). Conservative input-state-output systems with evolution on a multidimensional integer lattice. Multidimensional System Signal Processes 16(2): 133–198

    Article  MATH  MathSciNet  Google Scholar 

  • Ball J.A., & Vinnikov V. (2003). Formal reproducing kernel Hilbert spaces: The commutative and noncommutative settings. In D. Alpay (Ed.), Reproducing Kernel spaces and applications, (pp. 77–134), OT 143. Basel: Birkhäuser.

  • Ball J.A., & Vinnikov V. (2005). Lax-Phillips scattering and conservative linear systems: A Cuntz-algebra multidimensional setting. Memoirs of the American Mathematical Society, 178(837).

  • Bhattacharyya T., Eschmeier J., Sarkar J. (2005). Characteristic function of a pure commuting contractive tuple. Integral Equations and Operator Theory 53(1): 23–32

    Article  MATH  MathSciNet  Google Scholar 

  • Bhattacharyya T., Sarkar J. (2006). Characteristic function for polynomially contractive commuting tuples. Journal of Mathematical Analysis and Applications 321(1): 242–259

    Article  MATH  MathSciNet  Google Scholar 

  • Bolotnikov V., Rodman L. (2002). Finite dimensional backward shift invariant subspaces of Arveson spaces. Linear Algebra Applications 349, 265–282

    Article  MATH  MathSciNet  Google Scholar 

  • Bolotnikov V., Rodman L. (2004). Finite dimensional backward shift invariant subspaces of a class of reproducing kernel Hilbert spaces. Linear Multilinear Algebra 52, 321–334

    Article  MATH  MathSciNet  Google Scholar 

  • de Branges L., Rovnyak J. (1966). Canonical models in quantum scattering theory. In: Wilcox C.H., (eds) Perturbation theory and its applications in Quantum Mechanics. New York, Wiley, pp. 295–392

    Google Scholar 

  • Chalendar I. (2003). The operator-valued Poisson kernel and its applications. Irish Mathematical Society Bulletin 51, 21–44

    MATH  MathSciNet  Google Scholar 

  • Curto R.E., Vasilescu F.H. (1993). Standard operator models in the polydisc. Indiana University Mathematics Journal 42(3): 791–810

    Article  MATH  MathSciNet  Google Scholar 

  • Curto R.E., Vasilescu F.H. (1995). Standard operator models in the polydisc, II. Indiana Univiversity Mathematics Journal 44(3): 727–746

    MATH  MathSciNet  Google Scholar 

  • Davidson K., Pitts D. (1998). Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras. Integral Equations and Operator Theory 31(3): 321–337

    Article  MATH  MathSciNet  Google Scholar 

  • Davidson K.R.(2001). Free semigroup algebras: a survey. In A. A. Borichev, & N. K. Nikolski, (Eds.) Systems, approximation, singular integral operators, and related topics (pp. 209–240), OT 129, Basel: Birkhäuser.

  • Douglas R.G. (1974). Canonical models, In Topics in operator theory. Mathemetical Surveys 13, 161–218

    Google Scholar 

  • Drury S.W. (1978). A generalization of von Neumann’s inequality to the complex ball. Proceedings of the American Mathematical Society 68(3): 300–304

    Article  MATH  MathSciNet  Google Scholar 

  • Dym H. (1989). J contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS 71 Providence: American Mathematical Society.

  • Galkowski K. (2005). Minimal state-space realization for a class of nD systems. In: Kaashoek M.A., Seatzu S., van der Mee C. (eds), Recent advances in operator theory and its applications (pp. 179–194), OT 160, Basel: Birkhäuser.

  • Gleason A.M. (1964). Finitely generated ideals in Banach algebras. Journal of Mathematics and Mechanics 13, 125–132

    MATH  MathSciNet  Google Scholar 

  • Greene D., Richter S., Sundberg C. (2002). The structure of inner multipliers on spaces with complete Nevanlinna-Pick kernels. Journal of Functional Analysis 194, 311–321

    Article  MATH  MathSciNet  Google Scholar 

  • Heinz E. (1952). Ein v. Neumannsher Satz über beschränkte Operatoren im Hilbertschen Raum, Nachrichten der Akademie der Wissenschaften in Göttingen. II Mathematisch-Physikalische Klasse, 5–6.

  • Helton J.W. (1972/1973). The characteristic functions of operator theory and electrical network realization. Indiana University Mathematics Journal, 22, 403–414

    Google Scholar 

  • Helton J.W. (1974). Discrete time systems, operator models and scattering theory. Journal of Functional Analysis 16, 15–38

    Article  MATH  MathSciNet  Google Scholar 

  • Henkin G.M. (1971). The approximation of functions in pseudo-convex domains and a theorem of Z.L. Leĭbenzon. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, 19, 37–42

  • McCullough S., Trent T.T. (2000). Invariance subspaces and Nevanlinna-Pick kernels. Journal of Functional Analysis 178(1): 226–249

    Article  MATH  MathSciNet  Google Scholar 

  • Müller V., Vasilescu F.-H. (1993). Standard models for some commuting multioperators. Procedings of the American Mathematical Society 117(4): 979–989

    Article  MATH  Google Scholar 

  • Sz.-Nagy B., Foiaş C. (1970). Harmonic analysis of operators on Hilbert space. Amsterdam-London, North-Holland

    Google Scholar 

  • Popescu G. (1989a). Models for infinite sequences of noncommuting operators. Acta Scientiarum Mathematicarum (Szeged) 53, 355–368

    Google Scholar 

  • Popescu G. (1989b). Isometric dilations for infinite sequences of noncommuting operators. Transactions of the American Mathematical Society 316: 523–536

    Article  MATH  Google Scholar 

  • Popescu G. (1989c). Characteristic functions for infinite sequences of noncommuting operators. Journal of Operator Theory 22(1): 51–71

    MATH  Google Scholar 

  • Popescu G. (1989d). Multi-analytic operators and some factorization theorems. Indiana University Mathematics Journal 38(3): 693–710

    Article  MATH  Google Scholar 

  • Popescu G. (1991). von Neumann inequality for \({(B(\mathcal{H})^{n})_{1}}\) . Mathematica Scandinavica, 68, 292-304

    MATH  MathSciNet  Google Scholar 

  • Popescu G. (1995). Multi-analytic operators on Fock spaces. Mathematische Annalen 30, 31–46

    Article  Google Scholar 

  • Popescu G. (1998). Interpolation problems in several variables. Journal of Mathematical Analysis and Applications 227(1): 227–250

    Article  MATH  MathSciNet  Google Scholar 

  • Popescu G. (1999). Poisson transforms on some C*-algebras generated by isometries. Journal of Functional Analysis 161(1): 27–61

    Article  MATH  MathSciNet  Google Scholar 

  • Popescu G. (2006). Operator theory on noncommutative varieties. Indiana University Mathematics Journal 55(2): 389–442

    Article  MATH  MathSciNet  Google Scholar 

  • Popescu G. Operator theory on noncommutative varieties II. Proceedings of the American Mathematical Society (to appear).

  • Pott S. (1999). Standard models under polynomial positivity conditions. Journal of Operator Theory 41, 365–389

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bolotnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, J.A., Bolotnikov, V. & Fang, Q. Multivariable backward-shift-invariant subspaces and observability operators. Multidim Syst Sign Process 18, 191–248 (2007). https://doi.org/10.1007/s11045-006-0011-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-006-0011-y

Keywords

Mathematics Subject Classification 1991

Navigation