Skip to main content
Log in

Algebraic phase unwrapping along the real axis: extensions and stabilizations

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The unwrapped phase of a complex function is defined with a line integral of the gradient of the arctangent of the ratio of the real and imaginary parts of the function. The phase unwrapping, which is a problem to reconstruct the unwrapped phase of an unknown complex function from its finite observed samples, has been a key for estimating useful physical quantity in many signal and image processing applications. In the light of the functional data analysis, it is natural to estimate first the unknown complex function by a certain piecewise complex polynomial and then to compute the exact unwrapped phase of the piecewise complex polynomial with the algebraic phase unwrapping algorithms (Yamada et al. in IEEE Trans Signal Process 46(6), 1639–1664, 1998; Yamada and Bose in IEEE Trans Circuits Syst I Fundam Theory Appl 49(3), 298–304, 2002; Yamada and Oguchi in Multidimens Syst Signal Process 22(1–3), 191–211, 2011). In this paper, we propose several useful extensions and numerical stabilizations of the algebraic phase unwrapping along the real axis which was established originally in Yamada and Oguchi (Multidimens Syst Signal Process 22(1–3), 191–211, 2011). The proposed extensions include (i) removal of a certain critical assumption premised in the original algebraic phase unwrapping, and (ii) algebraic phase unwrapping for a pair of bivariate polynomials. Moreover, in order to resolve certain numerical instabilities caused by the coefficient growth in an inductive step in the original algorithm, we propose to compute directly a certain subresultant sequence without passing through the inductive step. The extensive numerical experiments exemplify the notable improvement, in the performance of the algebraic phase unwrapping, made by the proposed numerical stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The design and analysis of computer algorithms. Massachusetts: Addison-Wesley.

    MATH  Google Scholar 

  • Anai, H., & Yokoyama, K. (2011). Algorithms of quantifier elimination and their applications: Optimization by symbolic and algebraic methods. Tokyo: University of Tokyo Press (in Japanese).

  • Apostol, T. M. (1974). Mathematical analysis (2nd ed.). Massachusetts: Addison-Wesley.

    MATH  Google Scholar 

  • Brown, W. S., & Traub, J. F. (1971). On Euclid’s algorithm and the theory of subresultants. Journal of the ACM, 18(4), 505–514.

    Article  MATH  MathSciNet  Google Scholar 

  • Buckland, J. R., Huntley, J. M., & Turner, S. R. E. (1995). Unwrapping noisy phase maps by use of a minimum cost matching algorithm. Applied Optics, 34(23), 5100–5108.

    Article  Google Scholar 

  • Busbee, B. L., Gollub, G. H., & Nielson, C. W. (1970). On direct methods for solving Poisson’s equations. SIAM Journal of Numerical Analysis, 7(4), 627–656.

    Article  Google Scholar 

  • Chui, C. K. (1988). Multivariate splines. Pennsylvania: SIAM.

    Book  Google Scholar 

  • Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J., Guigay, J. P., et al. (1999). Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation X rays. Applied Physics Letters, 75(19), 2912–2914.

    Article  Google Scholar 

  • Collins, G. E. (1967). Subresultants and reduced polynomial remainder sequence. Journal of the ACM, 14(1), 128–142.

    Article  MATH  Google Scholar 

  • Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 813–821.

    Article  MathSciNet  Google Scholar 

  • Denbigh, P. N. (1994). Signal processing strategies for a bathymetric sidescan sonar. IEEE Journal of Oceanic Engineering, 19(3), 382–390.

    Article  Google Scholar 

  • Flynn, T. J. (1997). Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 14(10), 2692–2701.

    Article  Google Scholar 

  • Fried, D. L. (1977). Least-squares fitting a wave-front distortion estimate to an array of phase-difference measurements. Journal of the Optical Society of America, 67, 370–375.

    Article  Google Scholar 

  • Galbis, A., & Maestre, M. (2012). Vector analysis versus vector calculus. New York: Springer.

    Book  MATH  Google Scholar 

  • Ghiglia, D. C., & Pritt, M. D. (1998). Two-dimensional phase unwrapping: Theory, algorithms, and software. New York: Wiley.

    MATH  Google Scholar 

  • Ghiglia, D. C., & Romero, L. A. (1996). Minimum \(L^{p}\)-norm two-dimensional phase unwrapping. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 13(10), 1–15.

    Article  MathSciNet  Google Scholar 

  • Glover, G. H., & Schneider, E. (1991). Three-point Dixon technique for true water/fat decomposition with \(B_{0}\) inhomogeneity correction. Magnetic Resonance in Medicine, 18(2), 371–383.

    Article  Google Scholar 

  • Goldstein, R. M., Zebker, H. A., & Werner, C. L. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23(4), 713–720.

    Google Scholar 

  • Graham, L. C. (1974). Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 62(6), 763–768.

    Article  Google Scholar 

  • Hansen, R. E., Sæbø, T. O., Gade, K., & Chapman, S. (2003). Signal processing for AUV based interferometric synthetic aperture sonar. In Proceedings of OCEANS (pp. 2438–2444).

  • Hayes, M. P., & Gough, P. T. (2009). Synthetic aperture sonar: A review of current status. IEEE Journal of Oceanic Engineering, 34(3), 207–224.

    Article  Google Scholar 

  • Henrici, P. (1974). Applied and computational complex analysis vol. 1: Power series integration conformal mapping location of zeros. New York: Wiley.

    MATH  Google Scholar 

  • Hudgin, R. H. (1977). Wave-front reconstruction for compensated imaging. Journal of the Optical Society of America, 67(3), 375–378.

    Article  Google Scholar 

  • Jakowatz, C. V, Jr, Wahl, D. E., Eichel, P. H., Ghiglia, D. C., & Thompson, P. A. (1996). Spotlight-mode synthetic aperture radar: A signal processing approach. Massachusetts: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Judge, T. R., & Bryanston-Cross, P. J. (1994). A review of phase unwrapping techniques in fringe analysis. Optics and Laser Engineering, 21(4), 199–293.

    Article  Google Scholar 

  • Kitahara, D., & Yamada, I. (2012). A robust algebraic phase unwrapping based on spline approximation. IEICE Technical Report, 112(115), 1–6.

    Google Scholar 

  • Lin, Q., Vesecky, J. F., & Zebker, H. (1994, January). Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry. Applied Optics, 33(2), 201–208.

    Google Scholar 

  • Marden, M. (1989). Geometry of polynomials, mathematical surveys and monographs, no. 3. New York: American Mathematical Society; reprint with corrections of the original version, 1949.

  • Marron, J. C., Sanchez, P. P., & Sullivan, R. (1990). Unwrapping algorithm for least-squares phase recovery from the modulo \(2\pi \) bispectrum phase. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 7(1), 14–20.

    Article  MathSciNet  Google Scholar 

  • McGowan, R., & Kuc, R. (1982). A direct relation between a signal time series and its unwrapped phase. IEEE Transactions on Acoustics, Speech and Signal Processing, 30(5), 719–726.

    Article  MATH  Google Scholar 

  • Mishra, B. (1993). Algorithmic algebra. New York: Springer.

    Book  MATH  Google Scholar 

  • Moon-Ho Song, S., Napel, S., Pelc, N. J., & Glover, G. H. (1995). Phase unwrapping of MR phase images using Poisson equation. IEEE Transactions on Image Processing, 4(5), 667–676.

    Article  Google Scholar 

  • Negrete-Regagnon, P. (1996). Practical aspects of image recovery by means of bispectrum. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 13(7), 1557–1576.

    Article  Google Scholar 

  • Noll, R. J. (1978). Phase estimates from slope-type wave-front sensors. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 68(1), 139–140.

    Article  MathSciNet  Google Scholar 

  • Pritt, M. D., & Shipman, J. S. (1994). Least-squares two-dimensional phase unwrapping using FFTs. IEEE Transactions on Geoscience and Remote Sensing, 32(3), 706–708.

    Article  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functuinal data analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Rudin, W. (1976). Principles of mathematical analysis (3rd ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  • Sasaki, T., & Sasaki, M. (1989). Analysis of accuracy decreasing in polynomial remainder sequence with floating-point number coefficient. Journal of Information Processing, 12(4), 394–403.

    MATH  MathSciNet  Google Scholar 

  • Sasaki, T., & Sasaki, M. (1997). Polynomial remainder sequence and approximate GCD. ACM SIGSAM Bulletin, 31(3), 4–10.

    Article  Google Scholar 

  • Schumaker, L. L. (2007). Spline functions: Basic theory (3rd ed.). Cambridgeshire: Cambridge University Press.

    Book  Google Scholar 

  • Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 47(1), 1–52.

    MATH  Google Scholar 

  • Szumowski, J., Coshow, W. R., Li, F., & Quinn, S. F. (1994). Phase unwrapping in the three-point Dixon method for fat suppression MR imaging. Radiology, 192(2), 555–561.

    Article  Google Scholar 

  • Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 16(6), 22–38.

    Article  Google Scholar 

  • Wahba, G. (1990). Spline models for observational data. Pennsylvania: SIAM.

    Book  MATH  Google Scholar 

  • Weitkamp, T., Diaz, A., David, C., Pfeiffer, F., Stampanoni, M., Cloetens, P., et al. (2005). X-ray phase imaging with a grating interferometer. Optics Express, 13(16), 6296–6304.

    Article  Google Scholar 

  • Yamada, I., & Bose, N. K. (2002). Algebraic phase unwrapping and zero distribution of polynomial for continuous-time systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(3), 298–304.

    Article  MathSciNet  Google Scholar 

  • Yamada, I., & Oguchi, K. (2011). High-resolution estimation of the directions-of-arrival distribution by algebraic phase unwrapping algorithms. Multidimensional Systems and Signal Processing, 22(1–3), 191–211.

    Article  MATH  MathSciNet  Google Scholar 

  • Yamada, I., Kurosawa, K., Hasegawa, H., & Sakaniwa, K. (1998). Algebraic multidimensional phase unwrapping and zero distribution of complex polynomials—Characterization of multivariate stable polynomials. IEEE Transactions on Signal Processing, 46(6), 1639–1664.

    Article  MATH  MathSciNet  Google Scholar 

  • Ying, L. (2006). Phase unwrapping. In M. Akay (Ed.), Wiley encyclopedia of biomedical engineering. New York: Wiley.

  • Zebker, H. A., & Goldstein, R. M. (1986). Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research, 91(B5), 4993–4999.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS Grants-in-Aid (B-21300091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Yamada.

Appendices

Appendices

1.1 Appendix 1: On the expression and the integrability of \(\theta _{C}\)

Without loss of generality, we can assume \(G(t):=\mathrm{GCD}(C(t),\overline{C}(t))\in \mathbb{R }[t]\) and \(B(t)\ne 0\) for all \(t\in \mathbb{R }\). Let \(\mathcal{Z }_{C}:=\{t\in \mathbb{R }\mid C(t)=0\}\). Then by \(C(t)=G(t)B(t)\), it follows that

$$\begin{aligned} \frac{C^{\prime }(t)}{C(t)}=\frac{G^{\prime }(t)}{G(t)}+\frac{B^{\prime }(t)}{B(t)}\quad \text{ for } t\in \mathbb{R }\setminus \mathcal{Z }_{C}. \end{aligned}$$

Moreover, we have

$$\begin{aligned} \mathfrak{I }\left\{ \frac{C^{\prime }(t)}{C(t)}\right\} =\mathfrak{I } \left\{ \frac{B^{\prime }(t)}{B(t)}\right\} \quad \text{ for } \text{ all } t\in \mathbb{R }\setminus \mathcal{Z }_{C}, \end{aligned}$$

which, together with \(|\mathcal{Z }_{C}|<\infty \), ensures (3). Furthermore, by the continuity of

$$\begin{aligned} H(t):=\mathfrak{I }\left\{ \frac{B^{\prime }(t)}{B(t)}\right\} =\frac{B^{\prime }_{(1)}(t)B_{(0)}(t)-B_{(1)}(t)B^{\prime }_{(0)}(t)}{\{B_{(0)}(t)\}^{2}+\{B_{(1)}(t)\}^{2}}, \end{aligned}$$

the integral in (4) is well-defined. \(\square \)

1.2 Appendix 2: Proof of Proposition 1

By

$$\begin{aligned} (\arctan \{\mathcal{Q }_{A}(t)\})^{\prime }=\frac{A^{\prime }_{(1)}(t)A_{(0)}(t)-A_{(1)}(t)A^{\prime }_{(0)}(t)}{\{A_{(0)}(t)\}^{2}+\{A_{(1)}(t)\}^{2}} \end{aligned}$$

for all \(t\in (a,b)\setminus \mathcal Z _{A_{(0)}}\) and \(|\mathcal{Z }_{A_{(0)}}|<\infty \), we can express the \(\theta _{A}(t^{*})\) in (5) in terms of \(\arctan \{\mathcal{Q }_{A}(t)\}\) as follows.

  1. (I)

    If \(\mathcal{Z }_{A_{(0)}}=\varnothing \) or \(t^{*}\le \mu _{1}\), we have

    $$\begin{aligned} \theta _{A}(t^{*})&= \theta _{A}(a)+\int \nolimits _{ a}^{{ t}^{*}} \left( \arctan \left\{ \mathcal{Q }_{A}(t)\right\} \right) ^{\prime }dt\\&= \theta _{A}(a)-\lim _{t \rightarrow a+0}\arctan \{\mathcal{Q }_{A}(t)\}+\lim _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}. \end{aligned}$$

    and \(\varLambda (t^{*})=\sum \nolimits _{\mu _{i}\in (a,t^{*})}\mathcal{X }(\mu _{i})=0\) in (7).

  2. (II)

    If \(\mathcal{Z }_{A_{(0)}}\ne \varnothing \) and \(t^{*}>\mu _{1}\), by letting \(\mu _{k}:=\max (\{\mu _{1},\mu _{2},\ldots ,\mu _{z}\}\cap [a,t^{*}))\), we have

    $$\begin{aligned} \theta _{A}(t^{*})&= \theta _{A}(a)+\int \nolimits _{a}^{{t}^{*}} \left( \arctan \left\{ \mathcal{Q }_{A}(t)\right\} \right) ^{\prime }dt \nonumber \\&= \theta _{A}(a)+\int \nolimits _{a}^{\mu _{1}}\left( \arctan \left\{ \mathcal{Q }_{A}(t)\right\} \right) ^{\prime }dt \nonumber \\&\quad +\sum _{i=1}^{k-1}\int \nolimits _{\mu _{i}}^{\mu _{i+1}} \left( \arctan \left\{ \mathcal{Q }_{A}(t)\right\} \right) ^{\prime }dt+\int \nolimits _{\mu _{k}}^{t^{*}} \left( \arctan \left\{ \mathcal{Q }_{A}(t)\right\} \right) ^{\prime }dt \nonumber \\&= \theta _{A}(a)-\lim _{t \rightarrow a+0}\arctan \{\mathcal{Q }_{A}(t)\}+\lim _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}\nonumber \\&\quad +\sum _{i=1}^{k}\lim _{{\begin{array}{c} {\tau _{1}\rightarrow \mu _{i}-0}\\ {\tau _{2} \rightarrow \mu _{i}+0}\end{array}}}(\arctan \{\mathcal{Q }_{A}(\tau _{1})\}-\arctan \{\mathcal{Q }_{A}(\tau _{2})\}). \end{aligned}$$
    (19)

    Furthermore, for \(\mu _{i}\) \((i=1,2,\ldots ,k)\) and sufficiently small \(\varepsilon >0\), we have the following relations.

    1. (i)

      If \(A_{(0)}(t)A_{(1)}(t)>0\) for \(t\in (\mu _{i}-\varepsilon ,\mu _{i})\) and \(A_{(0)}(t)A_{(1)}(t)<0\) for \(t\in (\mu _{i},\mu _{i}+\varepsilon )\), then

      $$\begin{aligned} \left\{ \begin{array}{l} \lim \nolimits _{t\rightarrow \mu _{i}-0}\arctan \{\mathcal{Q }_{A}(t)\}=\pi /2,\\ \lim \nolimits _{t\rightarrow \mu _{i}+0}\arctan \{\mathcal{Q }_{A}(t)\}=-\pi /2, \end{array}\right. \, \text{ and } \,\mathcal{X }(\mu _{i})=1. \end{aligned}$$
    2. (ii)

      If \(A_{(0)}(t)A_{(1)}(t)<0\) for \(t\in (\mu _{i}-\varepsilon ,\mu _{i})\) and \(A_{(0)}(t)A_{(1)}(t)>0\) for \(t\in (\mu _{i},\mu _{i}+\varepsilon )\), then

      $$\begin{aligned} \left\{ \begin{array}{l} \lim \nolimits _{t\rightarrow \mu _{i}-0}\arctan \{\mathcal{Q }_{A}(t)\}=-\pi /2,\\ \lim \nolimits _{t\rightarrow \mu _{i}+0}\arctan \{\mathcal{Q }_{A}(t)\}=\pi /2, \end{array}\right. \ \text{ and } \ \mathcal{X }(\mu _{i})=-1. \end{aligned}$$
    3. (iii)

      Otherwise,

      $$\begin{aligned} \lim _{t\rightarrow \mu _{i}-0}\arctan \{\mathcal{Q }_{A}(t)\}=\displaystyle \lim _{t\rightarrow \mu _{i}+0}\arctan \{\mathcal{Q }_{A}(t)\}=\pm \pi /2, \ \text{ and } \ \mathcal{X }(\mu _{i})=0. \end{aligned}$$

    From (i), (ii) and (iii), we have

    $$\begin{aligned} \lim _{{\begin{array}{c}{\tau _{1} \rightarrow \mu _{i}-0}\\ {\tau _{2} \rightarrow \mu _{i}+0}\end{array}}}(\arctan \{\mathcal{Q }_{A}(\tau _{1})\}-\arctan \{\mathcal{Q }_{A}(\tau _{2})\})={\mathcal{X }}(\mu _{i})\pi . \end{aligned}$$
    (20)

    Finally, (19) and (20) yield (7). \(\square \)

1.3 Appendix 3: Proof of Lemma 1

For the readers’ convenience, we present proofs of all statements.

  1. (A)

    Proof of (a): Assume \({\Psi }_{q}(t^{*})=0\) at some \(t^{*}\in [a,b]\). Since \(\Psi _{q}(t)\) is \(\mathrm{GCD}(\Psi _{0},\Psi _{1})\), we have \(\Psi _{0}(t^{*})=\Psi _{1}(t^{*})=0\). Moreover, \(\Psi _{0}(t):= {\displaystyle \frac{A_{(0)}(t)}{(t-a)^{e_{0}}}}\) and \(\Psi _{1}(t):={\displaystyle \frac{A_{(1)}(t)}{(t-a)^{e_{1}}}}\) imply \(\Psi _{0}(a)\ne 0\) and \(\Psi _{1}(a)\ne 0\), and hence, \(A_{(0)}(t^{*})=\Psi _{0}(t^{*})=\Psi _{1}(t^{*})=A_{(1)}(t^{*})=0\) at some \(t^{*}\in (a,b]\). This contradicts \(A(t)=A_{(0)}(t)+jA_{(1)}(t)\ne 0\) for all \(t\in [a,b]\). As a result, \(\Psi _{q}(t)\ne 0\) for all \(t\in [a,b]\).

  2. (B)

    Proof of (b): Assume \(\Psi _{k}(t^{*})=\Psi _{k+1}(t^{*})=0\) at some \(t^{*}\in [a,b]\). Then \(\mathrm{GCD}(\Psi _{0},\Psi _{1})\equiv \mathrm{GCD}(\Psi _{k},\Psi _{k+1})\) implies \(\Psi _{0}(t^{*})=\Psi _{1}(t^{*})=0\), which contradicts \(A(t)=A_{(0)}(t)+jA_{(1)}(t)\ne 0\) for all \(t\in [a,b]\).

  3. (C)

    Proof of (c): Suppose \(\Psi _{k}(t^{*})=0\). Then from (b), i.e., \(\Psi _{k-1}(t^{*})\ne 0\) and \(\Psi _{k+1}(t^{*})\ne 0\), and \(\Psi _{k+1}(t^{*})=-\Psi _{k-1}(t^{*})+H_{k}(t^{*})\Psi _{k}(t^{*})=- \Psi _{k-1}(t^{*})\), we have \(\Psi _{k+1}(t^{*})\Psi _{k-1}(t^{*})<0\).

  4. (D)

    Proof of (d): Since \((t-a)^{e_{i}}>0\) \((i=0,1)\) for \(a<t\le b\), the proof is obvious.

  5. (E)

    Proof of (e): From \(\Psi _{i}(a)\ne 0\) and the continuity of \(\Psi _{i}(t)\,(i=0,1)\), we have

    $$\begin{aligned} \lim _{t \rightarrow a+0}\mathrm{sgn}(A_{(i)}(t))=\lim _{t \rightarrow a+0}\mathrm{sgn}\left( \frac{A_{(i)}(t)}{(t-a)^{e_{i}}}\right) =\lim _{t \rightarrow a+0}\mathrm{sgn}(\Psi _{i}(t))=\mathrm{sgn}(\Psi _{i}(a))\ne 0. \end{aligned}$$

    \(\square \)

1.4 Appendix 4: Proof of Theorem 1

We derive computable expressions for

$$\begin{aligned} \lim \nolimits _{t \rightarrow a+0}\arctan \{\mathcal{Q }_{A}(t)\}\quad \text{ and } \quad \lim \nolimits _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}+\varLambda (t^{*})\pi \end{aligned}$$

in (7) as follows.

  1. (A)

    Computable expression for \(\lim \nolimits _{t \rightarrow a+0}\arctan \{\mathcal{Q }_{A}(t)\}\) in (7):

    1. (I)

      If \(A_{(0)}(a)\ne 0\), we have  \({\lim \nolimits _{t \rightarrow a+0}\arctan \{\mathcal{Q }_{A}(t)\}}=\arctan \{\mathcal{Q }_{A}(a)\}\).

    2. (II)

      If \(A_{(0)}(a)=0\), then

      $$\begin{aligned} \lim _{t \rightarrow a+0}\arctan \{\mathcal{Q }_{A}(t)\}=\left\{ \begin{array}{ll} \pi /2&{}\ \text{ if } \,{\lim \nolimits _{t \rightarrow a+0}}\mathrm{sgn}(A_{(0)}(t)A_{(1)}(t))=1,\\ -\pi /2&{}\ \text{ if } \,{\lim \nolimits _{t \rightarrow a+0}}\mathrm{sgn}(A_{(0)}(t)A_{(1)}(t))=-1. \end{array}\right. \end{aligned}$$
      (21)

      From Lemma 1(e) and (21), \(\lim \nolimits _{t \rightarrow a+0}\arctan \{\mathcal{Q }_{A}(t)\}\) in (7) can be expressed as

      $$\begin{aligned} \lim _{t \rightarrow a+0}\arctan \{\mathcal{Q }_{A}(t)\}=\mathrm{sgn}(\Psi _{0}(a)\Psi _{1}(a))\pi /2. \end{aligned}$$
  2. (B)

    Computable expression for \(\lim \nolimits _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}+\varLambda (t^{*})\pi \) in (7): To derive the relation between \(V\{\Psi (t)\}\) and \(\mathcal{X }(\mu _{i})\) \((i=1,2,\ldots ,z)\), we have to know the behavior of \(V\{\Psi (t)\}\). Since the real polynomials \(\Psi _{k}(t)\) \((0\le k\le q)\) are all continuous, any point where \(V\{\Psi (t)\}\) changes must be in the neighborhood of a zero of some \(\Psi _{k}(t)\) \((0\le k\le q)\). Let us observe the behavior of \(V\{\Psi (t)\}\) in the neighborhood of a zero of \(\Psi _{k}(t)\) for \(0<k<q\). Suppose

    $$\begin{aligned} \Psi _{k}(\eta )=0\quad \text{ for }\,\eta \in [a,b]. \end{aligned}$$

    From Lemma 1(c) and the continuity of \(\Psi _{k-1}(t)\) and \(\Psi _{k+1}(t)\), there exists a sufficiently small \(\varepsilon >0\) such that

    $$\begin{aligned} \Psi _{k-1}(t)\Psi _{k+1}(t)<0\quad \text{ for } \text{ all }\;t\in (\eta -\varepsilon ,\eta +\varepsilon )\cap [a,b]. \end{aligned}$$
    (22)

    From (22), all the possibilities of the sign of \((\Psi _{k-1}(t),\Psi _{k}(t),\Psi _{k+1}(t))\) in \(t\in (\eta -\varepsilon ,\eta +\varepsilon )\cap [a,b]\) are \((+,\pm ,-)\), \((-,\pm ,+)\), \((+,0,-)\) or \((-,0,+)\). In all cases, the number of sign changes among \((\Psi _{k-1}(t),\Psi _{k}(t),\Psi _{k+1}(t))\) is 1. Therefore \(V\{\Psi (t)\}\) does not change in the neighborhood of a zero of \(\Psi _{k}(t)\) for \(0<k<q\). Moreover from Lemma 1(a), any change of \(V\{\Psi (t)\}\) is caused only by the sign changes of \((\Psi _{0}(t),\Psi _{1}(t))\) in the neighborhood of a zero of \(\Psi _{0}(t)\). To wrap up, for any point \(\xi _{i}\) \((i=0,1,\ldots ,z)\) such that

    $$\begin{aligned} a\le \xi _{0}<\mu _{1}<\xi _{1}<\mu _{2}<\xi _{2}<\cdots <\mu _{z}<\xi _{z}<b, \end{aligned}$$

    we have

    $$\begin{aligned} V\{\Psi (t)\}=\left\{ \begin{array}{ll} V\{\Psi (\xi _{0})\}&{}\ \text{ if }\,a\le t<\mu _{1},\\ V\{\Psi (\xi _{1})\}&{}\ \text{ if }\,\mu _{1}< t<\mu _{2},\\ &{}\vdots \\ V\{\Psi (\xi _{z})\}&{}\ \text{ if } \mu _{z}< t<b.\\ \end{array}\right. \end{aligned}$$
    (23)
    1. (I)

      If \(\mathcal{Z }_{A_{(0)}}=\varnothing \) or \(t^{*}\in (a,\mu _{1})\), we have \({{\lim }_{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}}=\arctan \{\mathcal{Q }_{A}(t^{*})\}\) and \([V\{\Psi (t^{*})\}-V\{\Psi (a)\}]\pi =[V\{\Psi (\xi _{0})\}- V\{\Psi (\xi _{0})\}]\pi =0=\sum \nolimits _{\mu _{i}\in (a,t^{*})}\mathcal{X }(\mu _{i})\).

    2. (II)

      If \(\mathcal{Z }_{A_{(0)}}\ne \varnothing ,\mu _{1}<t^{*}<b\) and \(t^{*}\ne \mu _{i}\) \((i=1,2,\ldots ,z)\), Lemma 1(b) and the continuity of \(\Psi _{1}(t)\) ensure the existence of a sufficiently small \(\varepsilon >0\) for \(\mu _{i}\) such that

      $$\begin{aligned} \left. \begin{array}{ll} [\mu _{i}-\varepsilon ,\mu _{i}+\varepsilon ]\subset (a,b)\\ \Psi _{1}(t)\ne 0\ \text{ for } \text{ all } t\in (\mu _{i}-\varepsilon ,\mu _{i}+\varepsilon )\\ \Psi _{0}(t)\Psi _{1}(t)\ne 0\ \text{ for } \text{ all } t\in (\mu _{i}-\varepsilon ,\mu _{i})\cup (\mu _{i},\mu _{i}+\varepsilon ) \end{array}\right\} . \end{aligned}$$
      (24)

      We fix arbitrarily \(\xi _{i-1}\in (\mu _{i}-\varepsilon ,\mu _{i})\) and \(\xi ^{\prime }_{i}\in (\mu _{i},\mu _{i}+\varepsilon )\).

      1. (i)

        If \(A_{(0)}(t)A_{(1)}(t)\!>\!0\bigl ({\mathop {\Longleftrightarrow }\limits ^\mathrm{Lemma~1(d) }}\!{\Psi }_{0}(t){\Psi }_{1}(t) \!>\!0\bigr )\) for \(t\!\in \!(\mu _{i}-\varepsilon ,\mu _{i})\) and \(A_{(0)}(t)A_{(1)}(t)\) \(<0\bigl ({\mathop {\Longleftrightarrow }\limits ^\mathrm{Lemma~1(d) }}{\Psi }_{0}(t){\Psi }_{1}(t)<0\big )\) for \(t\in (\mu _{i},\mu _{i}+\varepsilon )\), we have \(\mathrm{sgn}(\Psi _{0}(\xi _{i-1}))=\mathrm{sgn}(\Psi _{1}(\xi _{i-1}))\) and \(\mathrm{sgn}(\Psi _{0}(\xi ^{\prime }_{i}))=-\mathrm{sgn}(\Psi _{1}(\xi ^{\prime }_{i}))\). Then the number of sign changes of \((\Psi _{0}(\xi _{i-1}),\Psi _{1}(\xi _{i-1}))\) is \(0\), and that of \((\Psi _{0}(\xi ^{\prime }_{i}),\Psi _{1}(\xi ^{\prime }_{i}))\) is \(1\). Moreover by (23), we have \(V\{\Psi (\xi ^{\prime }_{i})\}=V\{{\Psi }(\xi _{i})\}\). Hence, we have

        $$\begin{aligned} V\{\Psi (\xi _{i})\}-V\{{\Psi }(\xi _{i-1})\}=V\{\Psi (\xi ^{\prime }_{i})\}-V\{{\Psi }(\xi _{i-1})\}=1 \ \text{ and } \ \mathcal{X }(\mu _{i})=1. \end{aligned}$$
      2. (ii)

        If \(A_{(0)}(t)A_{(1)}(t)\!<\!0\bigl ({\mathop {\Longleftrightarrow }\limits ^\mathrm{Lemma~1(d) }}\!{\Psi }_{0}(t){\Psi }_{1}(t)\!<\!0\bigr )\) for \(t\!\in \!(\mu _{i}-\varepsilon ,\mu _{i})\) and \(A_{(0)}(t)A_{(1)}(t)\) \(>0\bigl ({\mathop {\Longleftrightarrow }\limits ^\mathrm{Lemma~1(d) }} {\Psi }_{0}(t){\Psi }_{1}(t)>0\big )\) for \(t\in (\mu _{i},\mu _{i}+\varepsilon )\), we have \(\mathrm{sgn}(\Psi _{0}(\xi _{i-1}))=-\mathrm{sgn}(\Psi _{1}(\xi _{i-1}))\) and \(\mathrm{sgn}(\Psi _{0}(\xi ^{\prime }_{i}))=\mathrm{sgn}(\Psi _{1}(\xi ^{\prime }_{i}))\). Then the number of sign changes of \((\Psi _{0}(\xi _{i-1}),\Psi _{1}(\xi _{i-1}))\) is \(1\), and that of \((\Psi _{0}(\xi ^{\prime }_{i}),\Psi _{1}(\xi ^{\prime }_{i}))\) is \(0\). Moreover by (23), we have \(V\{\Psi (\xi ^{\prime }_{i})\}=V\{{\Psi }(\xi _{i})\}\). Hence, we have

        $$\begin{aligned} V\{\Psi (\xi _{i})\}-V\{\Psi (\xi _{i-1})\}\!=\!V\{\Psi (\xi ^{\prime }_{i})\}-V\{{\Psi }(\xi _{i-1})\}\!=\!-1 \quad \text{ and } \,\mathcal{X }(\mu _{i})\!=\!-1. \end{aligned}$$
      3. (iii)

        If \(A_{(0)}(t)A_{(1)}(t)\!>\!0\bigl ({\mathop {\Longleftrightarrow }\limits ^\mathrm{Lemma~1(d) }}\!{\Psi }_{0}(t){\Psi }_{1}(t)\!>\!0\bigr )\) for \(t\!\in \!(\mu _{i}-\varepsilon ,\mu _{i})\) and \(A_{(0)}(t)A_{(1)}(t)\) \(>0\bigl ({\mathop {\Longleftrightarrow }\limits ^\mathrm{Lemma~1(d) }}{\Psi }_{0}(t){\Psi }_{1}(t)>0\big )\) for \(t\in (\mu _{i},\mu _{i}+\varepsilon )\), we have \(\mathrm{sgn}(\Psi _{0}(\xi _{i-1}))=\mathrm{sgn}(\Psi _{1}(\xi _{i-1}))\) and \(\mathrm{sgn}(\Psi _{0}(\xi ^{\prime }_{i}))=\mathrm{sgn}(\Psi _{1}(\xi ^{\prime }_{i}))\). Then the number of sign changes of \((\Psi _{0}(\xi _{i-1}),\Psi _{1}(\xi _{i-1}))\) is \(0\), and that of \((\Psi _{0}(\xi ^{\prime }_{i}),\Psi _{1}(\xi ^{\prime }_{i}))\) is \(0\). Moreover by (23), we have \(V\{\Psi (\xi ^{\prime }_{i})\}=V\{{\Psi }(\xi _{i})\}\). Hence, we have

        $$\begin{aligned} V\{\Psi (\xi _{i})\}-V\{\Psi (\xi _{i-1})\}=V\{\Psi (\xi ^{\prime }_{i})\}-V\{{\Psi }(\xi _{i-1})\}=0 \ \text{ and } \ \mathcal{X }(\mu _{i})=0. \end{aligned}$$
      4. (iv)

        If \(A_{(0)}(t)A_{(1)}(t)\!<\!0\bigl ({\mathop {\Longleftrightarrow }\limits ^\mathrm{Lemma~1(d) }}\!{\Psi }_{0}(t){\Psi }_{1}(t)\!<\!0\bigr )\) for \(t\!\in \!(\mu _{i}-\varepsilon ,\mu _{i})\) and \(A_{(0)}(t)A_{(1)}(t)\) \(<0\bigl ({\mathop {\Longleftrightarrow }\limits ^\mathrm{Lemma~1(d) }}{\Psi }_{0}(t){\Psi }_{1}(t)<0\big )\) for \(t\in (\mu _{i},\mu _{i}+\varepsilon )\), we have \(\mathrm{sgn}(\Psi _{0}(\xi _{i-1}))=-\mathrm{sgn}(\Psi _{1}(\xi _{i-1}))\) and \(\mathrm{sgn}(\Psi _{0}(\xi ^{\prime }_{i}))=-\mathrm{sgn}(\Psi _{1}(\xi ^{\prime }_{i}))\). Then the number of sign changes of \((\Psi _{0}(\xi _{i-1}),\Psi _{1}(\xi _{i-1}))\) is \(1\), and that of \((\Psi _{0}(\xi ^{\prime }_{i}),\Psi _{1}(\xi ^{\prime }_{i}))\) is \(1\). Moreover by (23), we have \(V\{\Psi (\xi ^{\prime }_{i})\}=V\{{\Psi }(\xi _{i})\}\). Hence, we have

        $$\begin{aligned} V\{\Psi (\xi _{i})\}-V\{\Psi (\xi _{i-1})\}= V\{\Psi (\xi ^{\prime }_{i})\}-V\{{\Psi }(\xi _{i-1})\}=0 \, \text{ and } \, \mathcal{X }(\mu _{i})=0. \end{aligned}$$

      As a result, in all cases (i), (ii), (iii) and (iv), we have

      $$\begin{aligned} V\{\Psi (\xi _{i})\}-V\{\Psi (\xi _{i-1})\}=\mathcal{X }(\mu _{i}). \end{aligned}$$

      Finally, by letting \(\mu _{k}:=\max (\{\mu _{1},\mu _{2},\ldots ,\mu _{z}\}\cap [a,t^{*}))\) in the definition of \(\varLambda (t^{*})\), we have, from \(A_{(0)}(t^{*})\ne 0\) and (23),

      $$\begin{aligned} \lim _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}+\varLambda (t^{*})\pi&\!= \arctan \{\mathcal{Q }_{A}(t^{*})\}+\sum _{i=1}^{k}\mathcal{X }(\mu _{i})\pi \\&\!=\!&\arctan \{\mathcal{Q }_{A}(t^{*})\}\!+\!\sum _{i=1}^{k}[V\{\Psi (\xi _{i})\}\!-\! V\{\Psi (\xi _{i-1})\}]\pi \\&\!=\!&\arctan \{\mathcal{Q }_{A}(t^{*})\}+ [V\{\Psi (\xi _{k})\}-V\{\Psi (\xi _{0})\}]\pi \\&\!=\!&\arctan \{\mathcal{Q }_{A}(t^{*})\} +[V\{\Psi (t^{*})\}-V\{\Psi (a)\}]\pi . \end{aligned}$$
    3. (III)

      If \(\mathcal{Z }_{A_{(0)}}\!\ne \!\varnothing \) and \(t^{*}=\mu _{k}\) for some \(k\in \{1,2,\ldots ,z\}\), Lemma 1(b) and (d) ensure \(\mathrm{sgn}({\Psi }_{1}(\mu _{k}))\) \(=\mathrm{sgn}(A_{(1)}(\mu _{k}))\ne 0\), and we have

      $$\begin{aligned} \lim _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}=\left\{ \begin{array}{ll} \pi /2&{}\ \text{ if } { \lim \nolimits _{t \rightarrow \mu _{k}-0}}\mathrm{sgn}(A_{(0)}(t)A_{(1)}(\mu _{k}))=1,\\ -\pi /2&{}\ \text{ if } {\lim \nolimits _{t \rightarrow \mu _{k}-0}}\mathrm{sgn}(A_{(0)}(t)A_{(1)}(\mu _{k}))=-1. \end{array}\right. \end{aligned}$$
      (25)

      Fix \(\xi _{i-1}\) and \(\xi ^{\prime }_{i}\) \((i=1,2,\ldots ,k)\) in exactly same way as shown in the beginning of (II). Then we have \(V\{\Psi (\xi _{i})\}-V\{\Psi (\xi _{i-1})\}=\mathcal{X }(\mu _{i})\) \((i=1,2,\ldots ,k-1)\).

      1. (i)

        If \(\lim \nolimits _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}=\pi /2\), Lemma 1(d) and (25) ensure \(\mathrm{sgn}(\Psi _{0}(\xi _{k-1}))=\mathrm{sgn}(\Psi _{1}(\xi _{k-1}))\ne 0\) and \(\mathrm{sgn}(\Psi _{0}(\mu _{k}))=0\), which imply that both of the numbers of sign changes in \((\Psi _{0}(\xi _{k-1}),\Psi _{1}(\xi _{k-1}))\) and in \((\Psi _{0}(\mu _{k}),\Psi _{1}(\mu _{k}))\) are \(0\). Hence, we have

        $$\begin{aligned} V\{\Psi (\mu _{k})\}=V\{\Psi (\xi _{k-1})\}. \end{aligned}$$

        As a result, we have

        $$\begin{aligned} \lim _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}+\varLambda (t^{*})\pi&= \pi /2+\sum _{i=1}^{k-1}\mathcal{X }(\mu _{i})\pi \nonumber \\&= \pi /2+\displaystyle \sum _{i=1}^{k-1}[V\{\Psi (\xi _{i})\}- V\{\Psi (\xi _{i-1})\}]\pi \nonumber \\&= \pi /2+[V\{\Psi (\xi _{k-1})\}-V\{\Psi (\xi _{0})\}]\pi \nonumber \\&= \pi /2+[V\{\Psi (\mu _{k})\}-V\{\Psi (a)\}]\pi . \end{aligned}$$
        (26)
      2. (ii)

        If \(\lim \nolimits _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}\!=\!-\pi /2\), Lemma 1(d) and (25) ensure \(\mathrm{sgn}(\Psi _{0}(\xi _{k-1}))=-\mathrm{sgn}(\Psi _{1}(\xi _{k-1}))\!\ne \!0\) and \(\mathrm{sgn}(\Psi _{0}(\mu _{k}))\!=\!0\), which imply that the number of sign changes in \((\Psi _{0}(\xi _{k-1}),\Psi _{1}(\xi _{k-1}))\) is \(1\) while the number of sign changes in \((\Psi _{0}(\mu _{k}),\Psi _{1}(\mu _{k}))\) is \(0\). Hence, we have

        $$\begin{aligned} V\{\Psi (\mu _{k})\}=V\{\Psi (\xi _{k-1})\}-1. \end{aligned}$$

        As a result, we have

        $$\begin{aligned} \lim _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}+\varLambda (t^{*})\pi&= -\pi /2+\sum _{i=1}^{k-1}\mathcal{X }(\mu _{i})\pi \nonumber \\&= -\pi /2+\sum _{i=1}^{k-1}[V\{\Psi (\xi _{i})\}-V \{\Psi (\xi _{i-1})\}]\pi \nonumber \\&= -\pi /2+[V\{\Psi (\xi _{k-1})\}-V\{\Psi (\xi _{0})\}]\pi \nonumber \\&= -\pi /2+[V\{\Psi (\mu _{k})\}+1-V\{\Psi (a)\}]\pi \nonumber \\&= \pi /2+[V\{\Psi (\mu _{k})\}-V\{\Psi (a)\}]\pi . \end{aligned}$$
        (27)

      From (26) and (27), for both cases (i) and (ii), we have

      $$\begin{aligned} {\lim }_{t \rightarrow t^{*}-0}{\arctan }\{\mathcal{Q }_{A}(t)\}+\varLambda (t^{*})\pi =\pi /2+[V\{\Psi (t^{*})\}-V\{\Psi (a)\}]\pi . \end{aligned}$$
    4. (IV)

      Suppose that \(\mathcal{Z }_{A_{(0)}}\ne \varnothing \) and \(t^{*}=b\).

      1. (i)

        If \(A_{(0)}(b)\ne 0\), i.e., \(V\{{\Psi }(\xi _{z})\}=V\{{\Psi }(b)\}\), we can deduce, in almost same way as in proof for (II),

        $$\begin{aligned} \lim _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}\!+\!\varLambda (t^{*})\pi \!=\!\arctan \{\mathcal{Q }_{A}(t^{*})\}\!+\![V\{\Psi (t^{*})\}-V\{\Psi (a)\}]\pi . \end{aligned}$$
      2. (ii)

        If \(A_{(0)}(b)=0\), by imposing additionally, to the conditions of \(\varepsilon >0\) in (24),

        $$\begin{aligned} \left. \begin{array}{ll} b-\varepsilon >a\\ \Psi _{1}(t)\ne 0\, \text{ for } \text{ all } t\in (b-\varepsilon , b]\\ \Psi _{0}(t)\Psi _{1}(t)\ne 0\, \text{ for } \text{ all } t\in (b-\varepsilon ,b) \end{array}\right\} \end{aligned}$$

        and fixing arbitrarily \(\xi _{z}\in (b-\varepsilon ,b)\), we can deduce, in almost same way as in proof for (III),

        $$\begin{aligned} \lim _{t \rightarrow t^{*}-0}\arctan \{\mathcal{Q }_{A}(t)\}+\varLambda ({t}^{*})\pi =\pi /2+ [V\{\Psi (t^{*})\}-V\{\Psi (a)\}]\pi . \end{aligned}$$

From (A) and (B), we obtain (9) for all \(t^{*}\in (a,b]\). \(\square \)

1.5 Appendix 5: Proof of Theorem 2

  1. (A)

    Proof of (a): From

    $$\begin{aligned} \mathfrak I \left\{ \frac{\frac{\partial f_{(0)}}{\partial y}(x,y)+j\frac{\partial f_{(1)}}{\partial y}(x,y)}{f_{(0)}(x,y)+jf_{(1)}(x,y)}\right\} =\frac{\left( \frac{\partial f_{(1)}}{\partial y}(x,y)\right) f_{(0)}(x,y)-f_{(1)}(x,y)\left( \frac{\partial f_{(0)}}{\partial y}(x,y)\right) }{\{f_{(0)}(x,y)\}^{2}+\{f_{(1)}(x,y)\}^{2}}, \end{aligned}$$

    the denominator of \(\frac{\partial }{\partial x}\left( \mathfrak I \left\{ \frac{\frac{\partial f_{(0)}}{\partial y}(x,y)+j\frac{\partial f_{(1)}}{\partial y}(x,y)}{f_{(0)}(x,y)+jf_{(1)}(x,y)}\right\} \right) \) is \(\left[ \{f_{(0)}(x,y)\}^{2}+\{f_{(1)}(x,y)\}^{2}\right] ^{2}\), and the numerator is

    $$\begin{aligned}&\left[ \left( \frac{\partial ^{2}f_{(1)}}{\partial x\partial y}(x,y)\right) f_{(0)}(x,y)-f_{1} (x,y)\left( \frac{\partial ^{2}f_{(0)}}{\partial x\partial y}(x,y)\right) \right] \left[ \{f_{(0)}(x,y)\}^{2}+\{f_{(1)}(x,y)\}^{2}\right] \\&\quad -\left[ \left( \frac{\partial f_{(1)}}{\partial y}(x,y)\right) \left( \frac{\partial f_{(0)}}{\partial x}(x,y)\right) \!+\!\left( \frac{\partial f_{(1)}}{\partial x}(x,y)\right) \left( \frac{\partial f_{(0)}}{\partial y}(x,y)\right) \right] \left[ \{f_{(0)}(x,y)\}^{2}\!-\!\{f_{(1)}(x,y)\}^{2}\right] \\&\quad -2\left[ \left( \frac{\partial f_{(1)}}{\partial x}(x,y)\right) \left( \frac{\partial f_{(1)}}{\partial y}(x,y)\right) -\left( \frac{\partial f_{(0)}}{\partial x}(x,y)\right) \left( \frac{\partial f_{(0)}}{\partial y}(x,y)\right) \right] f_{(0)}(x,y)f_{(1)}(x,y). \end{aligned}$$

    Similarly, from

    $$\begin{aligned} \mathfrak I \left\{ \frac{\frac{\partial f_{(0)}}{\partial x}(x,y)+j\frac{\partial f_{(1)}}{\partial x}(x,y)}{f_{(0)}(x,y)+jf_{(1)}(x,y)}\right\} =\frac{\left( \frac{\partial f_{(1)}}{\partial x}(x,y)\right) f_{(0)}(x,y)-f_{(1)}(x,y)\left( \frac{\partial f_{(0)}}{\partial x}(x,y)\right) }{\{f_{(0)}(x,y)\}^{2}+\{f_{(1)}(x,y)\}^{2}}, \end{aligned}$$

    the denominator of \(\frac{\partial }{\partial y}\left( \mathfrak I \left\{ \frac{\frac{\partial f_{(0)}}{\partial x}(x,y)+j\frac{\partial f_{(1)}}{\partial x}(x,y)}{f_{(0)}(x,y)+jf_{(1)}(x,y)}\right\} \right) \) is \(\left[ \{f_{(0)}(x,y)\}^{2} +\{f_{(1)}(x,y)\}^{2}\right] ^{2}\), and the numerator is

    $$\begin{aligned}&{\left[ \left( \frac{\partial ^{2}f_{(1)}}{\partial y\partial x}(x,y)\right) f_{(0)}(x,y)\!-\!f_{1}(x,y) \left( \frac{\partial ^{2}f_{(0)}}{\partial y\partial x}(x,y)\right) \right] \left[ \{f_{(0)}(x,y)\}^{2}\!+\!\{f_{(1)}(x,y)\}^{2}\right] }\\&-\left[ \left( \frac{\partial f_{(1)}}{\partial x}(x,y)\right) \left( \frac{\partial f_{(0)}}{\partial y}(x,y)\right) +\left( \frac{\partial f_{(1)}}{\partial y}(x,y)\right) \left( \frac{\partial f_{(0)}}{\partial x}(x,y)\right) \right] \left[ \{f_{(0)}(x,y)\}^{2}-\{f_{(1)}(x,y)\}^{2}\right] \\&-2\left[ \left( \frac{\partial f_{(1)}}{\partial y}(x,y)\right) \left( \frac{\partial f_{(1)}}{\partial x}(x,y)\right) -\left( \frac{\partial f_{(0)}}{\partial y}(x,y)\right) \left( \frac{\partial f_{(0)}}{\partial x}(x,y)\right) \right] f_{(0)}(x,y)f_{(1)}(x,y). \end{aligned}$$

    Then, since \(f_{(i)}\in C^{2}(D)\,(i=0,1)\) ensure \(\frac{\partial ^{2} f_{(i)}}{\partial x \partial y}(x,y)=\frac{\partial ^{2} f_{(i)}}{\partial y \partial x}(x,y)\) for all \((x,y)\in D\), we have

    $$\begin{aligned} \frac{\partial }{\partial x}\left[ \mathfrak I \left\{ \frac{\frac{\partial f_{(0)}}{\partial y}(x,y)+j\frac{\partial f_{(1)}}{\partial y}(x,y)}{f_{(0)}(x,y)+jf_{(1)}(x,y)}\right\} \right] =\frac{\partial }{\partial y}\left[ \mathfrak I \left\{ \frac{\frac{\partial f_{(0)}}{\partial x}(x,y)+j\frac{\partial f_{(1)}}{\partial x}(x,y)}{f_{(0)}(x,y)+jf_{(1)}(x,y)}\right\} \right] \end{aligned}$$

    for all \((x,y)\in D\).

  2. (B)

    Proof of (b): Define

    $$\begin{aligned} P(x,y)&:= \mathfrak I \left\{ \frac{\frac{\partial f_{(0)}}{\partial x}(x,y)+j\frac{\partial f_{(1)}}{\partial x}(x,y)}{f_{(0)}(x,y)+jf_{(1)}(x,y)}\right\} \text{ and } \nonumber \\ Q(x,y)&:= \mathfrak I \left\{ \frac{\frac{\partial f_{(0)}}{\partial y}(x,y)+j\frac{\partial f_{(1)}}{\partial y}(x,y)}{f_{(0)}(x,y)+jf_{(1)}(x,y)}\right\} . \end{aligned}$$

    Then, since \(f_{(i)}\,(i=0,1)\) are \(C^{2}(D)\) functions, \(P\) and \(Q\) are \(C^{1}(D)\) functions. Moreover, from (a), \(P\) and \(Q\) satisfy \(\frac{\partial P}{\partial y}(x,y)=\frac{\partial Q}{\partial x}(x,y)\) for all \((x,y)\in D\). Hence, from Poincar\(\acute{\mathrm{e}}\)’s lemma (Fact 1(b)), there exists a function \(\theta _{f}\in C^{2}(D)\) satisfying

    $$\begin{aligned} \frac{\partial \theta _{f}}{\partial x}(x,y)=P(x,y)\, \text{ and } \, \frac{\partial \theta _{f}}{\partial y}(x,y)=Q(x,y)\, \text{ for } \text{ all } \,(x,y)\in D, \end{aligned}$$
    (28)

    and the function \(\theta _{f}\) is the scalar potential of the vector field \((P(x,y),Q(x,y))\) over \(D\). Eq. (28) implies that the function \(\theta _{f}\) is determined as

    $$\begin{aligned} \theta _{f}(x,y)=\int \left[ P(x,y)dx+Q(x,y)dy\right] \end{aligned}$$

    uniquely if we impose additionally the condition \(\theta _{f}(x_{0},y_{0})=\theta _{0}\).

  3. (C)

    Proof of (c): Define \(P(x,y)\) and \(Q(x,y)\) as in (B). From (a), i.e., \(\frac{\partial P}{\partial y}(x,y)=\frac{\partial Q}{\partial x}(x,y)\) for all \((x,y)\in D\), and Green’s theorem (Fact 1(a)), we have

    $$\begin{aligned} \oint \nolimits _{\partial \Omega }\left[ P(x,y)dx+Q(x,y)dy\right] =\int \int \nolimits _\Omega \left( \frac{\partial Q}{\partial x}(x,y)-\frac{\partial P}{\partial y}(x,y)\right) dxdy=0. \end{aligned}$$

    In particular, if \(\gamma ^\mathrm{I}\) and \(\gamma ^\mathrm{I\!I}\) are piecewise \(C^{1}\) paths in \(D\) with the same initial and final points, by letting \(\partial \Omega :=\gamma ^\mathrm{I}-\gamma ^\mathrm{I\!I}\), we have

    $$\begin{aligned} \oint \nolimits _{\gamma ^\mathrm{I}-\gamma ^\mathrm{I\!I}}\left[ P(x,y)dx+Q(x,y)dy\right] =0, \end{aligned}$$

    which implies

    $$\begin{aligned} \int \nolimits _{\gamma ^\mathrm{I}}\left[ P(x,y)dx+Q(x,y)dy\right] =\int \nolimits _{\gamma ^\mathrm{I\!I}}\left[ P(x,y)dx+Q(x,y)dy\right] . \end{aligned}$$
  4. (D)

    Proof of (d): By using the parameterizations \(\gamma ^\mathrm{I}(t):=(x_\mathrm{I}(t),y_\mathrm{I}(t))\) and \(\gamma ^\mathrm{I\!I}(\tau ):=(x_\mathrm{I\!I}(\tau ),y_\mathrm{I\!I}(\tau ))\), we deduce, from (c),

    $$\begin{aligned}&\int \nolimits _{a}^{b}\mathfrak I \left\{ \frac{\left( f_{(0)}(\gamma ^\mathrm{I}(t))\right) ^{\prime }+j\left( f_{(1)}(\gamma ^\mathrm{I}(t))\right) ^{\prime }}{f_{(0)}(\gamma ^\mathrm{I}(t))+jf_{(1)}(\gamma ^\mathrm{I}(t))}\right\} dt\\&\quad \!=\!\!\int \nolimits _{a}^{b}\frac{\frac{d}{dt}\!\left( f_{(1)}(x_\mathrm{I}(t),y_\mathrm{I}(t))\right) f_{(0)}(x_\mathrm{I}(t),y_\mathrm{I}(t))\!-\!f_{(1)}(x_\mathrm{I}(t),y_\mathrm{I}(t))\frac{d}{dt}\left( f_{(0)}(x_\mathrm{I}(t),y_\mathrm{I}(t)\right) }{\{f_{(0)}(x_\mathrm{I}(t),y_\mathrm{I}(t))\}^{2}\!+\!\{f_{(1)}(x_\mathrm{I}(t),y_\mathrm{I}(t))\}^{2}}dt\\&\quad \!=\!\int \nolimits _{\gamma ^\mathrm{I}(a)}^{\gamma ^\mathrm{I}(b)}\left[ \frac{\left( \frac{\partial f_{(1)}}{\partial x}(x,y)\right) f_{(0)}(x,y)-f_{(1)}(x,y)\left( \frac{\partial f_{(0)}}{\partial x}{(0)}(x,y)\right) }{\{f_{(0)}(x,y)\}^{2}+\{f_{(1)}(x,y)\}^{2}}dx\right. \\&\qquad \!+\!\left. \frac{\left( \frac{\partial f_{(1)}}{\partial y}(x,y)\right) f_{(0)}(x,y)-f_{(1)}(x,y)\left( \frac{\partial f_{(0)}}{\partial y}(x,y)\right) }{\{f_{(0)}(x,y)\}^{2}+\{f_{(1)}(x,y)\}^{2}}dy\right] \\&\quad \!=\!\int \nolimits _{\gamma ^\mathrm{I\!I}(c)}^{\gamma ^\mathrm{I\!I}(d)}\left[ \frac{\left( \frac{\partial f_{(1)}}{\partial x}(x,y)\right) f_{(0)}(x,y)-f_{(1)}(x,y)\left( \frac{\partial f_{(0)}}{\partial x}{(0)}(x,y)\right) }{\{f_{(0)}(x,y)\}^{2}+\{f_{(1)}(x,y)\}^{2}}dx\right. \\&\quad \quad \!+\!\left. \frac{\left( \frac{\partial f_{(1)}}{\partial y}(x,y)\right) f_{(0)}(x,y)-f_{(1)}(x,y)\left( \frac{\partial f_{(0)}}{\partial y}(x,y)\right) }{\{f_{(0)}(x,y)\}^{2}+\{f_{(1)}(x,y)\}^{2}}dy\right] \\&\quad \!=\!\int \nolimits _{c}^{d}\frac{\frac{d}{d\tau }\left( f_{(1)}(x_\mathrm{I\!I}(\tau ),y_\mathrm{I}(\tau ))\right) f_{(0)}(x_\mathrm{I\!I}(\tau ),y_\mathrm{I\!I}(\tau ))\!-\!f_{(1)}(x_\mathrm{I\!I}(\tau ),y_\mathrm{I}(\tau ))\frac{d}{d\tau }\left( f_{(0)}(x_\mathrm{I\!I}(\tau ),y_\mathrm{I\!I}(\tau )\right) }{\{f_{(0)}(x_\mathrm{I\!I}(\tau ),y_\mathrm{I\!I}(\tau ))\}^{2}+\{f_{(1)}(x_\mathrm{I\!I}(\tau ),y_\mathrm{I\!I}(\tau ))\}^{2}}d\tau \\&\quad \!=\!\int \nolimits _{c}^{d}\mathfrak I \left\{ \frac{\left( f_{(0)}(\gamma ^\mathrm{I\!I}(\tau ))\right) ^{\prime }+j\left( f_{(1)}(\gamma ^\mathrm{I\!I}(\tau ))\right) ^{\prime }}{f_{(0)}(\gamma ^\mathrm{I\!I}(\tau ))+jf_{(1)}(\gamma ^\mathrm{I\!I}(\tau ))}\right\} d\tau .\\ \end{aligned}$$

    \(\square \)

1.6 Appendix 6: Proof of Proposition 4

  1. (A)

    Proof of (a):

    1. (I)

      If \(k=1\), \(\mathrm{Sres}_{i}(P_{0},P_{1},t)\) \((i\in [\deg (P_{2}),\deg (P_{1})-1])\) can be expressed as a constant multiple of \(P_{2}(t)\) as one of the first three expressions in Fact 2. Clearly, these are special cases of (10).

    2. (II)

      If \(2\le k\le q-1\), i.e., \(\deg (P_{k+1})\le i\le \deg (P_{k})-1\le \deg (P_{k-1})-2\le \deg (P_{k-2})-3 \le \cdots \le \deg (P_{2})-(k-1)\), by using the forth expression in Fact 2 repeatedly, we deduce

      $$\begin{aligned}&\mathrm{Sres}_{i}(P_{0},P_{1},t)\\&=(-1)^{(\deg (P_{0})-\deg (P_{1})+1)(\deg (P_{1})-i)}(\mathrm{lc}(P_{1})) ^{\deg (P_{0})-\deg (P_{2})}\\&\quad \quad \times \,\mathrm{Sres}_{i}(P_{1},P_{2},t)\\&=(-1)^{(\deg (P_{0})-\deg (P_{1})+1)(\deg (P_{1})-i)} (\mathrm{lc}(P_{1}))^{\deg (P_{0})-\deg (P_{2})}\\&\quad \quad \times (-1)^{(\deg (P_{1})-\deg (P_{2})+1) (\deg (P_{2})-i)}(\mathrm{lc}(P_{2}))^{\deg (P_{1})-\deg (P_{3})}\\&\quad \quad \times \,\mathrm{Sres}_{i}(P_{2},P_{3},t)\\&=\cdots \\&=\prod _{n=0}^{k-2}(-1)^{(\deg (P_{n})-\deg (P_{n+1})+1) (\deg (P_{n+1})-i)}(\mathrm{lc}(P_{n+1}))^{\deg (P_{n})-\deg (P_{n+2})}\\&\quad \quad \times \,\mathrm{Sres}_{i}(P_{k-1},P_{k},t)\\&=\prod _{n=0}^{k-2}(-1)^{(\deg (P_{n})-\deg (P_{n+1})+1) (\deg (P_{n+1})-i)}(\mathrm{lc}(P_{n+1}))^{\deg (P_{n})-\deg (P_{n+2})}\\&\quad \times \,\left\{ \begin{array}{ll} (-1)^{\deg (P_{k-1})-\deg (P_{k})+1}(\mathrm{lc}(P_{k}))^{\deg (P_{k-1}) -\deg (P_{k})+1}P_{k+1}(t)\\ \quad \quad \quad \quad \text{ for } i\!=\!\deg (P_{k})-1,\\ 0\quad \quad \quad \,\,\text{ for } i\!\in \![\deg (P_{k+1})\!+\!1,\deg (P_{k})\!-\!2]\,\,(\text{ if } \deg (P_{k+1})\!<\!\deg (P_{k})\!-\!2),\\ (-1)^{(\deg (P_{k-1})-\deg (P_{k})+1)(\deg (P_{k})-\deg (P_{k+1}))}(\mathrm{lc}(P_{k}))^{\deg (P_{k-1})-\deg (P_{k+1})}\\ \quad \times (\mathrm{lc}(P_{k+1}))^{\deg (P_{k})-\deg (P_{k+1})-1}P_{k+1}(t)\\ \quad \quad \quad \quad \text{ for } i=\deg (P_{k}+1), \end{array}\right. \\&=\left\{ \begin{array}{l} \lambda _{\deg (P_{k})-1}P_{k+1}(t)\\ \quad \quad \quad \quad \quad \text{ for } i\!=\!\deg (P_{k})-1,\\ 0\quad \quad \quad \quad \,\,\text{ for } i\!\in \![\deg (P_{k+1})\!+\!1,\deg (P_{k})\!-\!2]\,\,\,(\text{ if } \deg (P_{k+1})\!<\!\deg (P_{k})\!-\!2),\\ \lambda _{\deg (P_{k+1})}(\mathrm{lc}(P_{k+1}))^{\deg (P_{k}) -\deg (P_{k+1})-1}P_{k+1}(t)\\ \quad \quad \quad \quad \quad \text{ for } i=\deg (P_{k+1}). \end{array}\right. \end{aligned}$$
  2. (B)

    Proof of (b): If \(\det (M_{i}(P_{0},P_{1}))\ne 0\) for all \(i\in [0,\deg (P_{1})-1]\), from (6), we have \(\det (M_{i}(P_{0},P_{1}))\) \(=\mathrm{lc}(\mathrm{Sres}_{i}(P_{0},P_{1},t))\) for all \(i\in [0,\deg (P_{1})-1]\). Hence \(\deg (\mathrm{Sres}_{i}(P_{0},P_{1},t))=i\) for all \(i\in [0,\) \(\deg (P_{1})-1]\). Assume that there exists some \(k\in [1,q-1]\) s.t. \(\deg (P_{k+1})<\deg (P_{k})-1\). Then, from (a), we have \(\deg (\mathrm{Sres}_{\deg (P_{k})-1}(P_{0},P_{1},t))=\deg (P_{k+1})<\deg (P_{k})-1\), which contradicts \(\deg (\mathrm{Sres}_{i}(P_{0},\) \(P_{1},t))\) \(=i\) for all \(i\in [0,\deg (P_{1})-1]\). Therefore, we have \(\deg (P_{k+1})=\deg (P_{k})-1=\deg (P_{1})-k\) for all \(k\in [1,q-1]\). Since \(\deg (P_{k+1})=\deg (P_{k})-1=\deg (P_{1})-k\) for all \(k\in [1,q-1]\) ensures \(\deg (P_{k})-\deg (P_{k+1})+1=2\) and \(\deg (P_{k})-\deg (P_{k+2})=2\) for all \(k\in [1,q-2]\), we have

    $$\begin{aligned} \lambda _{\deg (P_{k+1})}&= (-1)^{(\deg (P_{0})-\deg (P_{1})+1) (\deg (P_{1})-\deg (P_{k+1}))}(\mathrm{lc}(P_{1}))^{\deg (P_{0})-\deg (P_{2})}\\&\quad \times \prod _{n=1}^{k-2}(-1)^{2(\deg (P_{n+1})-\deg (P_{k+1}))} (\mathrm{lc}(P_{n+1}))^{2}\\&\quad \times (-1)^{2}(\mathrm{lc}(P_{k}))^{2}\\&= \left( (-1)^{k}\mathrm{lc}(P_{1})\right) ^{\deg (P_{0})-\deg (P_{1})+1} \prod _{n=2}^{k}\left( \mathrm{lc}(P_{n})\right) ^{2}. \end{aligned}$$

    \(\square \)

1.7 Appendix 7: Proof of Proposition 5

  1. (A)

    Proof of (a): We derive computable expressions for

    $$\begin{aligned} \deg (P_{l+1}),\mathrm{lc}(P_{l+1}) \text{ and } \mathrm{sgn}(\mathrm{lc}(P_{l+1})). \end{aligned}$$
    1. (I)

      Computable expression for \(\deg (P_{l+1})\): From Proposition 4(a), for \(i\in [\deg (P_{l+1}),\deg (P_{l})-1], \mathrm{Sres}_{i}(P_{0},P_{1},t)\) can be expressed as

      $$\begin{aligned} \mathrm{Sres}_{i}(P_{0},P_{1},t)=\left\{ \begin{array}{l} \lambda _{\deg (P_{l})-1}P_{l+1}(t)\\ \quad \quad \quad \quad \quad \quad \text{ for } i=\deg (P_{l})-1,\\ 0\quad \quad \quad \quad \quad \,\,\text{ for } i\in [\deg (P_{l+1})+1,\deg (P_{l})-2]\\ \quad \quad \quad \quad \quad \quad (\text{ if }\deg (P_{l+1})<\deg (P_{l})-2),\\ \lambda _{\deg (P_{l+1})}(\mathrm{lc}(P_{l+1}))^{\deg (P_{l})- \deg (P_{l+1})-1}P_{l+1}(t)\\ \quad \quad \quad \quad \quad \quad \text{ for } i=\deg (P_{l+1}). \end{array}\right. \end{aligned}$$
      (29)
      1. (i)

        If \(\deg (P_{l+1})=\deg (P_{l})-1\), we have, from the third expression in (29), \(\deg (\mathrm{Sres}_{\deg (P_{l})-1}\,(P_{0},P_{1},t))= \deg (\mathrm{Sres}_{\deg (P_{l+1})}(P_{0},P_{1},t))=\deg (P_{l+1})=\deg (P_{l})-1\). Moreover, from (6), we have \(\det (M_{\deg (P_{l})-1}(P_{0},P_{1}))= \mathrm{lc}(\mathrm{Sres}_{\deg (P_{l+1})}(P_{0},P_{1},t))\ne 0\). Hence, we have

        $$\begin{aligned} \deg (P_{l+1})=\deg (P_{l})-\min \{s\in \mathbb N ^{*}\mid \det (M_{\deg (P_{l})-s}(P_{0},P_{1}))\ne 0\}. \end{aligned}$$
      2. (ii)

        If \(\deg (P_{l+1})=\deg (P_{l})-2\), let us examine first the case \(s=1\). Then we have, from the first expression in (29), \(\deg (\mathrm{Sres}_{\deg (P_{l})-1}\) \((P_{0},P_{1},t))=\deg (P_{l+1})<\deg (P_{l})-1\). Moreover, from (6), we have \(\det (M_{\deg (P_{l})-1}(P_{0},P_{1}))=0\). Next, let us examine the case \(s=2\). Then we have, from the third expression in (29), \(\deg \) \((\mathrm{Sres}_{\deg (P_{l})-2}(P_{0},P_{1},t))\!=\!\deg (\mathrm{Sres}_{\deg (P_{l+1})} (P_{0},P_{1},t))\!=\!\deg (P_{l+1})\!=\!\deg (P_{l})\!-2\). Moreover, from (6), we have \(\det (M_{\deg (P_{l})-2}(P_{0},P_{1}))\!=\! \mathrm{lc}(\mathrm{Sres}_{\deg (P_{l+1})}(P_{0},\) \(P_{1},t))\) \(\ne 0\). Hence, we have

        $$\begin{aligned} \deg (P_{l+1})=\deg (P_{l})-\min \{s\in \mathbb N ^{*}\mid \det (M_{\deg (P_{l})-s}(P_{0},P_{1}))\ne 0\}. \end{aligned}$$
      3. (iii)

        If \(\deg (P_{l+1})\!\le \!\deg (P_{l})-3\), let us examine first the case \(s=1\). Then we have, from the first expression in (29), \(\deg (\mathrm{Sres}_{\deg (P_{l})-1}(P_{0},P_{1},t))=\deg (P_{l+1})<\deg (P_{l})-1\). Moreover, from (6), we have \(\det (M_{\deg (P_{l})-1}(P_{0},P_{1}))=0\). Next let us examine the cases \(s=\{2,3,\ldots ,\deg (P_{l})-\deg (P_{l+1})-1\}\), we have, from the second expression in (29), \(\deg (\mathrm{Sres}_{\deg (P_{l})-s}(P_{0},P_{1},t))=\deg (0)=-\infty <\deg (P_{l})-s\). Moreover, from (6), we have \(\det (M_{\deg (P_{l})-2}\) \((P_{0},P_{1}))=0\). Third let us examine the case \(s=\deg (P_{l})-\deg (P_{l+1})\), we have, from the third expression in (29), \(\deg (\mathrm{Sres}_{\deg (P_{l})-s}(P_{0},P_{1},t))=\deg (\mathrm{Sres}_{\deg (P_{l+1})} (P_{0},P_{1},t))=\deg (P_{l+1})=\deg (P_{l})-s\). Moreover, from (6), we have \(\det (M_{\deg (P_{l})-s}(P_{0},P_{1}))=\mathrm{lc}(\mathrm{Sres}_{\deg (P_{l+1})}(P_{0},\) \(P_{1},t))\ne 0\). Hence, we have

        $$\begin{aligned} \deg (P_{l+1})=\deg (P_{l})-\min \{s\in \mathbb N ^{*}\mid \det (M_{\deg (P_{l})-s}(P_{0},P_{1}))\ne 0\}. \end{aligned}$$
    2. (II)

      Computable expression for \(\mathrm{lc}(P_{l+1})\) and \(\mathrm{sgn}(\mathrm{lc}(P_{l+1}))\):

      1. (i)

        If \((\deg (P_{l})-\deg (P_{l+1}))\) is odd, from \(\deg (\mathrm{Sres}_{\deg (P_{l+1})}(P_{0},P_{1},t))=\deg (P_{l+1})\), we have, from (6)

        $$\begin{aligned} \det (M_{\deg (P_{l+1})}(P_{0},P_{1}))&= \mathrm{lc}(\mathrm{Sres}_{\deg (P_{l+1})}(P_{0},P_{1},t))\nonumber \\&= \lambda _{\deg (P_{l+1})}(\mathrm{lc}(P_{l+1}))^{\deg (P_{l}) -\deg (P_{l+1})-1}\times \mathrm{lc}(P_{l+1})\nonumber \\&= \lambda _{\deg (P_{l+1})} (\mathrm{lc}(P_{l+1}))^{\deg (P_{l})-\deg (P_{l+1})}. \end{aligned}$$
        (30)

        Hence, we deduce

        $$\begin{aligned} \mathrm{lc}(P_{l+1})=\root \deg (P_{l})-\deg (P_{l+1}) \of {{\frac{\det (M_{\deg (P_{l+1})}(P_{0},P_{1}))}{\lambda _{\deg (P_{l+1})}}}}. \end{aligned}$$

        Moreover, from (30), we have

        $$\begin{aligned}&\mathrm{sgn}\left( \lambda _{\deg (P_{l+1})}\det (M_{\deg (P_{l+1})}(P_{0},P_{1}))\right) \nonumber \\&\quad =\mathrm{sgn}\left( \lambda ^{2}_{\deg (P_{l+1})}(\mathrm{lc}(P_{l+1}))^{\deg (P_{l})-\deg (P_{l+1})}\right) \\&\quad = \mathrm{sgn}\left( (\mathrm{lc}(P_{l+1}))^{\deg (P_{l})-\deg (P_{l+1})}\right) =\mathrm{sgn}(\mathrm{lc}(P_{l+1})). \end{aligned}$$
      2. (ii)

        If \((\deg (P_{l})-\deg (P_{l+1}))\) is even, i.e., \((\deg (P_{l})-\deg (P_{l+1})-1)\) is odd, we have, from the first and third expressions of (29), for any \(\tau \in \mathbb R \),

        $$\begin{aligned} \left. \begin{array}{l} \mathrm{Sres}_{\deg (P_{l})-1}(P_{0},P_{1},\tau )=\lambda _{\deg (P_{l})-1}P_{l+1}(\tau )\\ \mathrm{Sres}_{\deg (P_{l+1})}(P_{0},P_{1},\tau )=\lambda _{\deg (P_{l+1})}(\mathrm{lc}(P_{l+1}))^{\deg (P_{l})-\deg (P_{l+1})-1}P_{l+1}(\tau ) \end{array}\right\} .\nonumber \\ \end{aligned}$$
        (31)

        Therefore, by using any \(\tau \in \mathbb R \), we deduce

        $$\begin{aligned} \mathrm{lc}(P_{l+1})=\root \deg (P_{l})-\deg (P_{l+1})-1 \of {{\frac{\lambda _{\deg (P_{l})-1} \mathrm{Sres}_{\deg (P_{l+1})}(P_{0},P_{1},\tau )}{\lambda _{\deg (P_{l+1})}\mathrm{Sres}_{\deg (P_{l})-1}(P_{0},P_{1},\tau )}}}. \end{aligned}$$

        Moreover, from (31), we have

        $$\begin{aligned}&\mathrm{sgn}\left( \lambda _{\deg (P_{l})-1}\lambda _{\deg (P_{l+1})}\mathrm{Sres}_{\deg (P_{l})-1}(P_{0},P_{1},\tau ) \mathrm{Sres}_{\deg (P_{l+1})}(P_{0},P_{1},\tau )\right) \\&\quad =\mathrm{sgn}\left( \lambda ^{2}_{\deg (P_{l})-1}\lambda ^{2}_{\deg (P_{l+1})} (\mathrm{lc}(P_{l+1}))^{\deg (P_{l})-\deg (P_{l+1})-1}(P_{l+1}(\tau ))^{2}\right) \\&\quad =\mathrm{sgn}\left( (\mathrm{lc}(P_{l+1}))^{\deg (P_{l})-\deg (P_{l+1})-1}\right) = \mathrm{sgn}(\mathrm{lc}(P_{l+1})). \end{aligned}$$
  2. (B)

    Proof of (b): If \(\det (M_{i}(P_{0},P_{1}))\ne 0\) for all \(i\in [0,\deg (P_{1})-1]\), we can regard Eq.  (12) as a special case of (A)-(II)-(i), and hence obtain, for all \(k\in [1,q-1]\),

    $$\begin{aligned} \mathrm{lc}(P_{k+1})=\frac{\det (M_{\deg (P_{1})-k}(P_{0},P_{1}))}{\left( (-1)^{k}\mathrm{lc}(P_{1})\right) ^{\deg (P_{0})-\deg (P_{1})+1} \prod \limits _{n=2}^{k}\left( \mathrm{lc}(P_{n})\right) ^{2}}. \end{aligned}$$

    Moreover, since Eq. (12) ensures \(\mathrm{sgn}(\lambda _{\deg (P_{k\!+\!1})})\!=\!\! \mathrm{sgn}\left( \left( (\!-1)^{k}\mathrm{lc}(P_{1})\right) ^{(\deg (P_{0})\!-\!\deg (P_{1})\!+\!1)}\right) \), we have, for all \(k\in [1,q-1]\),

    $$\begin{aligned} \mathrm{sgn}(\mathrm{lc}(P_{k+1}))&= \mathrm{sgn}\left( \lambda _{\deg (P_{k+1})} \det (M_{\deg (P_{k+1})}(P_{0},P_{1}))\right) \\&= \mathrm{sgn}\left( \left( (-1)^{k}\mathrm{lc}(P_{1})\right) ^{\deg (P_{0})- \deg (P_{1})+1}\det (M_{\deg (P_{1})-k}(P_{0},P_{1}))\right) . \end{aligned}$$

    \(\square \)

1.8 Appendix 8: Proof of Theorem 3

  1. (A)

    Proof of (a): If \(\deg (\Psi _{0})\ge \deg (\Psi _{1})\) and \(q\ge 2\), from Proposition 4(a) and (8), we have

    $$\begin{aligned} \mathrm{sgn}({\Psi }_{k}(t^{*}))&= (-1)^{\frac{(k-1)k}{2}}\mathrm{sgn}(P_{k}(t^{*}))\\&= (-1)^{\frac{(k-1)k}{2}}\mathrm{sgn}\left( \frac{\mathrm{Sres}_{\deg (P_{k})} (P_{0},P_{1},t^{*})}{\lambda _{\deg (P_{k})}(\mathrm{lc}(P_{k}))^{\deg (P_{k-1})-\deg (P_{k})-1}}\right) \\&= (-1)^{\frac{(k-1)k}{2}}\mathrm{sgn}\left( \frac{\mathrm{Sres}_{\deg (P_{k})} (P_{0},P_{1},t^{*})}{\lambda _{\deg (P_{k})}(\mathrm{lc}(P_{k}))^{\deg (P_{k-1})-\deg (P_{k})-1}}\right) \\&\quad \times \,\mathrm{sgn}\left( \lambda ^{2}_{\deg (P_{k})}(\mathrm{lc}(P_{k})) ^{2(\deg (P_{k-1})-\deg (P_{k})-1)}\right) \\&= (-1)^{\frac{(k-1)k}{2}}\mathrm{sgn}(\lambda _{\deg (P_{k})}) \bigl (\mathrm{sgn}(\mathrm{lc}(P_{k}))\bigr )^{\deg (P_{k-1})-\deg (P_{k})-1}\\&\quad \times \,\mathrm{sgn}\left( \mathrm{Sres}_{\deg (P_{k})}(P_{0},P_{1},t^{*})\right) \\&= (-1)^{\frac{(k-1)k}{2}}\kappa ^{\langle 0\rangle }_{\deg (\Psi _{k})}\bigl (\mathrm{sgn}(\mathrm{lc}(P_{k}))\bigr ) ^{\deg (\Psi _{k-1})-\deg (\Psi _{k})-1}\\&\quad \times \,\mathrm{sgn}\left( \mathrm{Sres}_{\deg ({\Psi }_{k})}({\Psi }_{0}, {\Psi }_{1},t^{*})\right) , \end{aligned}$$

    where we used \({\Psi }_{0}(t)=P_{0}(t)\), \({\Psi }_{1}(t)=P_{1}(t)\), \(\deg ({\Psi }_{k})=\deg (P_{k})\) and \(\mathrm{sgn}(\lambda _{\deg (P_{k})})=\kappa ^{\langle 0\rangle }_{\deg (\Psi _{k})}\) by (11). In particular, if \(\det (M_{i}({\Psi }_{0},{\Psi }_{1}))\ne 0\) for all \(i\in [0,\deg ({\Psi }_{1})-1]\), we have, from (12), \(\deg ({\Psi }_{q})=\deg ({\Psi }_{1})-(q-1)=0\), and hence \(q=\deg ({\Psi }_{1})+1\). Moreover we have, from \(\deg (\Psi _{k-1})-\deg ({\Psi }_{k})-1=0\) and (12), \(\kappa ^{\langle 0\rangle }_{\deg (\Psi _{k})}\bigl (\mathrm{sgn}(\mathrm{lc}(P_{k}))\bigr )^{\deg (\Psi _{k-1})-\deg (\Psi _{k})-1}=\kappa ^{\langle 0\rangle }_{\deg (\Psi _{k})}=\mathrm{sgn}(\lambda _{\deg (P_{k})})=(-1)^{(k-1)(\deg ({\Psi }_{0})-\deg (\Psi _{1})-1)}\bigl (\mathrm{sgn}(\mathrm{lc}(\Psi _{1}))\bigr )^{\deg (\Psi _{0})-\deg (\Psi _{1})+1}\). As a result, we have (14).

  2. (B)

    Proof of (b): If \(\deg (\Psi _{0})<\deg (\Psi _{1})\), i.e., \(\deg (P_{0})<\deg (P_{1})\), and \(q\ge 3, P_{2}(t)=P_{0}(t)-0\times P_{1}(t)=P_{0}(t)\) and we have \(\deg (P_{1})>\deg (P_{2})>\cdots >\deg (P_{q})\). Then by replacing \(P_{0}(t)\) and \(P_{1}(t)\) in Proposition 4(a) with \(P_{1}(t)\) and \(P_{2}(t)\), for any \(k=\{2,3,\ldots ,q-1\}\), \(\mathrm{Sres}_{i}(P_{1},P_{0},t)\) \((i\in [\deg (P_{k+1}),\deg (P_{k})-1])\) can be expressed as

    $$\begin{aligned} \mathrm{Sres}_{i}(P_{1},P_{0},t)&\!= \mathrm{Sres}_{i}(P_{1},P_{2},t)\\&\!=\!&\left\{ \begin{array}{l} \lambda ^{\langle 1\rangle }_{\deg (P_{k})\!-\!1}P_{k+1}(t)\\ \quad \quad \quad \quad \quad \quad \text{ for } i\!=\!\deg (P_{k})\!-\!1,\\ 0\quad \quad \quad \quad \quad \,\,\text{ for } i\!\in \![\deg (P_{k+1})\!+\!1,\deg (P_{k})\!-\!2]\,\,(\text{ if } \deg (P_{k+1})\!<\!\deg (P_{k})\!-\!2),\\ \lambda ^{\langle 1\rangle }_{\deg (P_{k+1})}(\mathrm{lc}(P_{k+1}))^ {\deg (P_{k})\!-\!\deg (P_{k+1})\!-\!1}P_{k+1}(t)\\ \quad \quad \quad \quad \quad \quad \text{ for }\,i=\deg (P_{k+1}), \end{array}\right. \end{aligned}$$

    where, for \(i=\deg (P_{k})-1, \deg (P_{k+1})\),

    $$\begin{aligned} \lambda ^{\langle 1 \rangle }_{i}&:= \prod _{n=1}^{k-2}(-1)^{(\deg (P_{n})-\deg (P_{n+1})+1)(\deg (P_{n+1})-i)} (\mathrm{lc}(P_{n+1}))^{\deg (P_{n})-\deg (P_{n+2})}\\&\quad \times (-1)^{(\deg (P_{k-1})-\deg (P_{k})+1) (\deg (P_{k})-i)}(\mathrm{lc}(P_{k}))^{\deg (P_{k-1})-i}. \end{aligned}$$

    As a result, we have,

    $$\begin{aligned} \mathrm{sgn}({\Psi }_{k}(t^{*}))&= (-1)^{\frac{(k-1)k}{2}}\mathrm{sgn}(P_{k}(t^{*}))\\&= (-1)^{\frac{(k-1)k}{2}}\mathrm{sgn}\left( \frac{\mathrm{Sres}_{\deg (P_{k})}(P_{1},P_{0},t^{*})}{\lambda ^{\langle 1\rangle }_{\deg (P_{k})}(\mathrm{lc}(P_{k}))^{\deg (P_{k-1})-\deg (P_{k})-1}}\right) \\&= (-1)^{\frac{(k-1)k}{2}}\mathrm{sgn}\left( \frac{\mathrm{Sres}_{\deg (P_{k})}(P_{1},P_{0},t^{*})}{\lambda ^{\langle 1\rangle }_{\deg (P_{k})}(\mathrm{lc}(P_{k}))^{\deg (P_{k-1})-\deg (P_{k})-1}}\right) \\&\quad \times \,\mathrm{sgn}\left( \left( \lambda ^{\langle 1\rangle }_{\deg (P_{k})}\right) ^{2}(\mathrm{lc}(P_{k}))^{2(\deg (P_{k-1})-\deg (P_{k})-1)}\right) \\&= (-1)^{\frac{(k-1)k}{2}}\mathrm{sgn}(\lambda ^{\langle 1\rangle }_{\deg (P_{k})})\bigl (\mathrm{sgn}(\mathrm{lc}(P_{k})) \bigr )^{\deg (P_{k-1})-\deg (P_{k})-1}\\&\quad \times \,\mathrm{sgn}\left( \mathrm{Sres}_{\deg (P_{k})}(P_{1},P_{0},t^{*})\right) \\&= (-1)^{\frac{(k-1)k}{2}}\kappa ^{\langle 1\rangle }_{\deg (\Psi _{k})}\bigl (\mathrm{sgn}(\mathrm{lc}(P_{k}))\bigr )^{\deg (\Psi _{k-1})-\deg (\Psi _{k})-1}\\&\quad \times \,\mathrm{sgn}\left( \mathrm{Sres}_{\deg ({\Psi }_{k})}({\Psi }_{1}, {\Psi }_{0},t^{*})\right) , \end{aligned}$$

    where we used \({\Psi }_{0}(t)=P_{0}(t)\), \({\Psi }_{1}(t)=P_{1}(t)\), \(\deg ({\Psi }_{k})=\deg (P_{k})\) and \(\mathrm{sgn}(\lambda ^{\langle 1\rangle }_{\deg (P_{k})})=\kappa ^{\langle 1\rangle }_{\deg (\Psi _{k})}\). In particular, if \(\det (M_{i}({\Psi }_{1},{\Psi }_{0}))\ne 0\) for all \(i\in [0,\deg ({\Psi }_{0})-1]\), in almost same way as in proof for (A), we have \(q=\deg ({\Psi }_{0})+2\) and (16). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitahara, D., Yamada, I. Algebraic phase unwrapping along the real axis: extensions and stabilizations. Multidim Syst Sign Process 26, 3–45 (2015). https://doi.org/10.1007/s11045-013-0234-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0234-7

Keywords

Navigation