Skip to main content
Log in

Characterization of Pseudomonas aeruginosa RM-3 as a Potential Biocontrol Agent

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Molecular characterization of rhizobacterial isolate RM-3, based on sequencing of a partial 1,313-bp fragment of 16S rDNA amplicon, validated the strain as Pseudomonas aeruginosa. The strain showed significant growth inhibition of different phytopathogenic fungi in dual plate and liquid culture assays. Maximum growth inhibition was found in case of Macrophomina phaseolina in plate assay (68%), whereas it was 93% in Dreschlera graminae in dual liquid assay. Microscopic studies (light and scanning electron) showed morphological abnormalities such as perforation, fragmentation, swelling, shriveling and lysis of hyphae of pathogenic fungi. The strain also exhibited production of siderophore and hydrogen cyanide (HCN) on chrome azurol S and King’s B media, respectively. Besides, this strain also produced extracellular chitinase enzyme and an important antibiotic, phenazine. Seed bacterization with RM-3 showed a significant (P < 0.05) increase in seed germination, shoot length, shoot fresh and dry weight, root length, root fresh and dry weight and leaf area. It was also able to colonize the rhizosphere of plants and reduced percent disease incidence in M. phaseolina-infested soil by 83%. Yield parameters such as pods, number of seeds and grain yield per plant also enhanced significantly (P < 0.05) in comparison to control. Thus, the secondary metabolites producing Pseudomonas aeruginosa strain RM-3 exhibited innate potential of plant growth promotion and biocontrol potential in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anjaiah V, Cornelis P, Koedam N. Effect of genotype and root colonization in biological control of Fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Canadian J Microbiol. 2003;49:85–91.

    Article  CAS  Google Scholar 

  2. Bano N, Musarrat J. Characterization of a New Pseudomonas aeruginosa Strain NJ-15 as a Potential Biocontrol Agent. Curr Microbiol. 2003;46:324–8.

    Article  PubMed  CAS  Google Scholar 

  3. Bhatia S, Dubey RC, Maheshwari DK. Antagonistic effect of fluorescent pseudomonads against Macrophomina phaseolina that cause charcoal rot of groundnut. Ind J Exp Biol. 2003;41:1442–6.

    Google Scholar 

  4. Broekaert WF, Terras FR, Cammue GPA, Vanderleyden J. An automated quantitative assay for fungal growth. FEMS Microbiol Lett. 1990;69:55–60.

    Article  CAS  Google Scholar 

  5. Buysens S, Heungens K, Poppe J, Hofte M. Involvement of pyochelin and pyoverdin in suppression of Pythium induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol. 1996;62:865–71.

    PubMed  CAS  Google Scholar 

  6. Castric PA. Hydrogen cyanide a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol. 1975;21:613–8.

    Article  PubMed  CAS  Google Scholar 

  7. Chang WT, Chen CS, Wang SL. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as carbon source. Curr Microbiol. 2003;47:102–8.

    Article  PubMed  CAS  Google Scholar 

  8. Chang WT, Chen YC, Jao CL. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour Technol. 2007;98:1224–30.

    Article  PubMed  CAS  Google Scholar 

  9. Charles TC, Nester EW. A chromosomally sensory transduction system is required for tumefaciens. J Bacteriol. 1993;175(20):6614–25.

    PubMed  CAS  Google Scholar 

  10. Chen CY, Wang YH, Huang CJ. Enhancement of the antifungal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene. Can J Microbiol. 2004;50:451–4.

    Article  PubMed  CAS  Google Scholar 

  11. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 2003;157:503–23.

    Article  CAS  Google Scholar 

  12. Defago G, Haas D. Pseudomonads as antagonists of soil borne plant pathogens: mode of action and genetic analysis. Soil Biochem. 1990;6:249–91.

    CAS  Google Scholar 

  13. DeMarco JL, Lima CLH, Desousa MV, Felix CRA. Trichoderma harzianum chitinase destroys the cell walls of the phytopathogen Crinipellis pernicosa, the casual agent of the witches broom disease of cocoa. World J Microbiol Biotechnol. 2000;16:383–6.

    Article  CAS  Google Scholar 

  14. Dube HC, Podile AR. Biological control of microbial plant pathogens. Indian Rev Life Sci. 1989;9:15–30.

    Google Scholar 

  15. Fridlender M, Inbar J, Chet I. Biological control of soil borne plant pathogens by a β-1, 3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem. 1993;25:1211–21.

    Article  CAS  Google Scholar 

  16. Gardner JM, Chandler L, Feldman AW. Growth promotion and inhibition by antibiotics producing fluorescent Pseudomonads on citrus root. Plant Soil. 1984;77:103–13.

    Article  Google Scholar 

  17. Gravel V, Antoun H, Tweddell RJ. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of Indole Acetic Acid (IAA). Soil Biol Biochem. 2007;39:1968–77.

    Article  CAS  Google Scholar 

  18. Gupta CP, Dupey RC, Kang SC, Maheshwari DK. Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Curr Sci. 2001;81:91–4.

    Google Scholar 

  19. Gupta CP, Kumar B, Dubey RC, Maheshwary DK. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. Biocontrol. 2006;51:821–35.

    Article  CAS  Google Scholar 

  20. Hofte M, Seong KY, Jurkevitch E, Verstraete W. Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK2: ecological significance in soil. Plant Soil. 1991;130:249–57.

    Article  CAS  Google Scholar 

  21. Hu HB, Xu YQ, Cheng F, Zhang XH, Hur B. Isolation and characterization of a new Pseudomonas strain produced both phenazine 1-carboxylic acid and pyoluteorin. J Microbiol Biotech. 2005;15:86–90.

    CAS  Google Scholar 

  22. Huang J, Xu Y, Zhang H, Li Y, Huang X, Ren B, Zhang X. Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol. 2009;75:6568–80.

    Article  PubMed  CAS  Google Scholar 

  23. Iswandi A, Bossier P, Vandenabeele J, Verstraete W. Effect of seed inoculation with the rhizoPseudomonas strain 7NSK2 on the root microflora of maize (Zea mays) and barley (Hordeum vulgare). Biol Fertil Soils. 1987;3:153–8.

    Article  Google Scholar 

  24. Johri BN, Rao CVS, Goel R. Fluorescent Pseudomonads in plant disease management. In: Dadarwal KR, editor. Biotechnological approaches in soil microrganism for sustainable crop production. Jodhpur: Scientific Publishers; 1997. p. 193–221.

    Google Scholar 

  25. Kavithai K, Mathiyagani S, Sendhilveli V, Nakkeerani S, Chandrqsekari G, Dilantha W, Fernando G. Broad spectrum action of phenazine against active and dormant structures of fungal pathogens and root knot nematode. Archives of Phytopathology and Plant Protection. 2005;38:69–76.

    Article  CAS  Google Scholar 

  26. Keel C, Voisard C, Berling CH, Kadr G, Defago G. Iron sufficiency, a prerequisite for the suppression of tobacco root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology. 1989;79:584–9.

    Article  Google Scholar 

  27. Lee WH, Kobayashi DY. Isolation and identification of antifungal Pseudomonas sp. from sugarbeet roots and its antibiotic products. Korean J Plant Pathol. 1989;4:264.

    Google Scholar 

  28. Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EN, Zaleska I. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol. 1987;8:102–6.

    Google Scholar 

  29. Lim HS, Kim SD. The production and enzymatic properties of extracellular chitinase from Pseudomonas stutzeri YPL1 as a biocontrol agent. J Microbiol Biotechnol. 1994;4:134–40.

    CAS  Google Scholar 

  30. Lim HS, Kim SD. The role and characterization of β-1, 3-glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri YLP-1. Curr Microbiol. 1995;33(4):295–301.

    CAS  Google Scholar 

  31. Loper JE, Buyer JS. Siderophore in microbial interactions on plant surfaces. Mol Plant-Microbe Interact. 1991;4:5–13.

    CAS  Google Scholar 

  32. Maatallah J, Berraho EB, Munoz S, Sanjuan J, Lluch C. Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. J Appl Microbiol. 2002;93:531–40.

    Article  PubMed  CAS  Google Scholar 

  33. Millar RL, Higgins VJ. Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology. 1970;60:104–10.

    Article  CAS  Google Scholar 

  34. Neiland JB. Microbial iron compounds. Annu Rev Biochem. 1981;50:715–31.

    Article  Google Scholar 

  35. Neiland JB, Leong SA. Siderophores in relation to plant disease. Annu Rev Plant Physiol. 1986;37:187–208.

    Article  Google Scholar 

  36. Park JK, Morita K, Fukumoto I, Yamasaki Y, Nakagawa T, Kawamukai M, Matsuda H. Purification and characterization of the Chitinase (ChiA) from Enterobacter sp. G1. Biosci Biotechnol Biochem. 1997;61:684–9.

    Article  CAS  Google Scholar 

  37. Reissig JL, Strominger JL, Leloir LF. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955;27:959–66.

    Google Scholar 

  38. Schwyn B, Neiland JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:47–56.

    Article  PubMed  CAS  Google Scholar 

  39. Seong KY, Hofte M, Verstraete W. Acclimatization of plant growth promoting Pseudomonas strain 7NSK2 in soil: effect on population dynamics and plant growth. Soil Biol Biochem. 1992;24:75–759.

    Article  Google Scholar 

  40. Shaharoona BM, Arshad ZA, Zahir A. Khalid. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem. 2006;38:2971–5.

    Article  CAS  Google Scholar 

  41. Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F. Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiologic parameters influencing its production. Appl Environ Microbiol. 1992;58:353–8.

    PubMed  CAS  Google Scholar 

  42. Singh N, Pandey P, Dubey RC. Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis. World J Microbiol Biotechnol. 2008;24:1669–79.

    Article  Google Scholar 

  43. Sivan A, Chet I. Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum TK-1. J Ferment Bioeng. 1989;78:407–12.

    Google Scholar 

  44. Stainier RY, Palleroni NJ, Doudoroff M. The aerobic Pseudomonads: a taxonomic study. J Gen Microbiol. 1966;41:159–271.

    Google Scholar 

  45. Upadhyay RS, Jayaswal RK. Pseudomonas cepacia causes mycelial deformities and inhibition of condition in phytopathogenic fungi. Curr Microbiol. 1992;24:181–7.

    Article  Google Scholar 

  46. Whipps JH. Microbial interactions and biocontrol in the rhizosphere. J Exp Biol. 2001;52:487–511.

    CAS  Google Scholar 

  47. Yuen GY, Schroth MN. Interaction of Pseudomonads fluorescens strains E6 with ornamental plants and its effect on the composition of root colonization microflora. Phytopathology. 1986;76:176–9.

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Prof. Vinay Sharma, Head, Department of Bioscience and Biotechnology, and Prof Aditya Shastri, Vice Chancellor, Banasthali University, for providing necessary facilities for this study and constant encouragement. The facilities provided to us for a fraction of work in Microbiology lab, IARI, New Delhi, and at AIIMS, New Delhi, for SEM images are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minaxi, Saxena, J. Characterization of Pseudomonas aeruginosa RM-3 as a Potential Biocontrol Agent. Mycopathologia 170, 181–193 (2010). https://doi.org/10.1007/s11046-010-9307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9307-4

Keywords

Navigation