Skip to main content
Erschienen in: Natural Computing 2/2015

01.06.2015

DNA walker circuits: computational potential, design, and verification

verfasst von: Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, Andrew J. Turberfield

Erschienen in: Natural Computing | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unlike their traditional, silicon counterparts, DNA computers have natural interfaces with both chemical and biological systems. These can be used for a number of applications, including the precise arrangement of matter at the nanoscale and the creation of smart biosensors. Like silicon circuits, DNA strand displacement systems (DSD) can evaluate non-trivial functions. However, these systems can be slow and are susceptible to errors. It has been suggested that localised hybridization reactions could overcome some of these challenges. Localised reactions occur in DNA ‘walker’ systems which were recently shown to be capable of navigating a programmable track tethered to an origami tile. We investigate the computational potential of these systems for evaluating Boolean functions and forming composable circuits. We find that systems of multiple walkers have severely limited potential for parallel circuit evaluation. DNA walkers, like DSDs, are also susceptible to errors. We develop a discrete stochastic model of DNA walker ‘circuits’ based on experimental data, and demonstrate the merit of using probabilistic model checking techniques to analyse their reliability, performance and correctness. This analysis aids in the design of reliable and efficient DNA walker circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We do not investigate circuit area in this paper.
 
2
It is not a necessary condition that the two disjoint sets of paths reaching the join were forked by a common gate, only that they can be partitioned based on the value of some variable.
 
3
A Boolean function must differ from another on at least one input. As such, there are \(2^{2^n}\) possible Boolean functions of \(n\) variables that differ in at least one of the \(2^n\) possible inputs. Intuitively, this is the number of unique binary strings of length \(2^n\).
 
4
Intel i5-2520M, Fedora 3.8.4-102.fc17.x86 64, OpenJDK RE-1.7, PRISM 4.0.3
 
5
www.prismmodelchecker.org/casestudies/dna_walkers.php
 
Literatur
Zurück zum Zitat Aziz A, Sanwa K, Singhal V, Brayton R (2006) Verifying continuous time markov chains. Springer, Heidelberg, pp 269–276 Aziz A, Sanwa K, Singhal V, Brayton R (2006) Verifying continuous time markov chains. Springer, Heidelberg, pp 269–276
Zurück zum Zitat Baier C, Haverkort B, Hermanns H, Katoen J (2003) Model-checking algorithms for continuous-time markov chains. IEEE Trans Softw Eng 29:524–541 Baier C, Haverkort B, Hermanns H, Katoen J (2003) Model-checking algorithms for continuous-time markov chains. IEEE Trans Softw Eng 29:524–541
Zurück zum Zitat Bath J, Green SJ, Allen KE, Turberfield AJ (2009) Mechanism for a directional, processive, and reversible dna motor. Small 5:1513–1516CrossRef Bath J, Green SJ, Allen KE, Turberfield AJ (2009) Mechanism for a directional, processive, and reversible dna motor. Small 5:1513–1516CrossRef
Zurück zum Zitat Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angewandte Chem 44:4358–4361 Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angewandte Chem 44:4358–4361
Zurück zum Zitat Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput Surv 24:293–318 Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput Surv 24:293–318
Zurück zum Zitat Cha TG, Pan J, Chen H, Salgado J, Li X, Mao C, Choi JH (2014) A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nat nanotechnol 9:39–43 Cha TG, Pan J, Chen H, Salgado J, Li X, Mao C, Choi JH (2014) A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nat nanotechnol 9:39–43
Zurück zum Zitat Chandran H, Gopalkrishnan N, Phillips A, Reif J (2011) Localized hybridization circuits. DNA Comput Mol Program 6937:64–83CrossRef Chandran H, Gopalkrishnan N, Phillips A, Reif J (2011) Localized hybridization circuits. DNA Comput Mol Program 6937:64–83CrossRef
Zurück zum Zitat Dannenberg F, Hahn EM, Kwiatkowska M (2013) Computing cumulative rewards using fast adaptive uniformisation. In: Proceedings of the 11th conference on computational methods in systems biology (CMSB’13) Dannenberg F, Hahn EM, Kwiatkowska M (2013) Computing cumulative rewards using fast adaptive uniformisation. In: Proceedings of the 11th conference on computational methods in systems biology (CMSB’13)
Zurück zum Zitat Green S, Bath J, Turberfield A (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101:238101 Green S, Bath J, Turberfield A (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101:238101
Zurück zum Zitat Hérault T, Lassaigne R, Magniette F, Peyronnet S (2004) Approximate probabilistic model checking. In: Steffen B, Levi G. (eds.) VMCAI. Lecture Notes in Computer Science, vol 2937. Springer, Heidelberg, pp 73–84 Hérault T, Lassaigne R, Magniette F, Peyronnet S (2004) Approximate probabilistic model checking. In: Steffen B, Levi G. (eds.) VMCAI. Lecture Notes in Computer Science, vol 2937. Springer, Heidelberg, pp 73–84
Zurück zum Zitat Kary RM (1972) Reducibility among combinatorial problems. Springer, Tbilisi Kary RM (1972) Reducibility among combinatorial problems. Springer, Tbilisi
Zurück zum Zitat Kwiatkowska M, Norman G, Parker D (2007) Stochastic model checking. In: Bernardo M, Hillston J. (eds.) Formal methods for the design of Computer, Communication and Software Systems: Performance Evaluation (SFM’07). LNCS (Tutorial Volume), vol 4486. Springer, Berlin, pp 220–270 Kwiatkowska M, Norman G, Parker D (2007) Stochastic model checking. In: Bernardo M, Hillston J. (eds.) Formal methods for the design of Computer, Communication and Software Systems: Performance Evaluation (SFM’07). LNCS (Tutorial Volume), vol 4486. Springer, Berlin, pp 220–270
Zurück zum Zitat Kwiatkowska M, Norman G, Parker D (2010) Symbolic systems biology. Probabilistic model checking for systems biology. Jones and Bartlett, Sudbury, pp 31–59 Kwiatkowska M, Norman G, Parker D (2010) Symbolic systems biology. Probabilistic model checking for systems biology. Jones and Bartlett, Sudbury, pp 31–59
Zurück zum Zitat Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verification of probabilistic real-time systems. Compu Aided Verif 6806:585–591MathSciNet Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verification of probabilistic real-time systems. Compu Aided Verif 6806:585–591MathSciNet
Zurück zum Zitat Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Letters 11:982–987 Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Letters 11:982–987
Zurück zum Zitat Muscat RA, Bath J, Turberfield AJ (2012) Small molecule signals that direct the route of a molecular cargo. Small 8:3593–3597CrossRef Muscat RA, Bath J, Turberfield AJ (2012) Small molecule signals that direct the route of a molecular cargo. Small 8:3593–3597CrossRef
Zurück zum Zitat Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324:67–71CrossRef Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324:67–71CrossRef
Zurück zum Zitat Qian L, Soloveichik D, Winfree E (2010) Efficient Turing-universal computation with DNA polymers. DNA Comput Mol Program 6518:123–140CrossRef Qian L, Soloveichik D, Winfree E (2010) Efficient Turing-universal computation with DNA polymers. DNA Comput Mol Program 6518:123–140CrossRef
Zurück zum Zitat Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–1201CrossRef Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–1201CrossRef
Zurück zum Zitat Seelig G, Soloveichik D, Zhang D, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588CrossRef Seelig G, Soloveichik D, Zhang D, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588CrossRef
Zurück zum Zitat Semenov O, Olah MJ, Stefanovic D (2011) Mechanism of diffusive transport in molecular spider models. Phys Rev E 83:021117 Semenov O, Olah MJ, Stefanovic D (2011) Mechanism of diffusive transport in molecular spider models. Phys Rev E 83:021117
Zurück zum Zitat von Neumann J (1956) Probabilistic logics and synthesis of reliable organisms from unreliable components. In: Shannon C, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 43–98 von Neumann J (1956) Probabilistic logics and synthesis of reliable organisms from unreliable components. In: Shannon C, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 43–98
Zurück zum Zitat Wickham SFJ, Bath J, Katsuda Y, Endo M, Hidaka K, Sugiyama H, Turberfield AJ (2012) A DNA-based molecular motor that can navigate a network of tracks. Nat Nanotechnol 7:169–173 Wickham SFJ, Bath J, Katsuda Y, Endo M, Hidaka K, Sugiyama H, Turberfield AJ (2012) A DNA-based molecular motor that can navigate a network of tracks. Nat Nanotechnol 7:169–173
Zurück zum Zitat Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield AJ (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169 Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield AJ (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169
Zurück zum Zitat Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angewandte Chem Int Ed 43:4906–4911 Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angewandte Chem Int Ed 43:4906–4911
Zurück zum Zitat Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131:17303–17314 Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131:17303–17314
Metadaten
Titel
DNA walker circuits: computational potential, design, and verification
verfasst von
Frits Dannenberg
Marta Kwiatkowska
Chris Thachuk
Andrew J. Turberfield
Publikationsdatum
01.06.2015
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 2/2015
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-014-9426-9

Weitere Artikel der Ausgabe 2/2015

Natural Computing 2/2015 Zur Ausgabe