Skip to main content
Log in

Biocompatibility of nanoactuators: stem cell growth on laser-generated nickel–titanium shape memory alloy nanoparticles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoactuators made from nanoparticulate NiTi shape memory alloy show potential in the mechanical stimulation of bone tissue formation from stem cells. We demonstrate the fabrication of Ni, Ti, and NiTi shape memory alloy nanoparticles and their biocompatibility to human adipose-derived stem cells. The stoichiometry and phase transformation property of the bulk alloy is preserved during attrition by femtosecond laser ablation in liquid, giving access to colloidal nanoactuators. No adverse effect on cell growth and attachment is observed in proliferation assay and environmental electron scanning microscopy, making this material attractive for mechanical stimulation of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ausanio G, Barone AC, Iannotti V, Lanotte L, Amoroso S, Bruzzese R, Vitello M (2004) Magnetic and morphological characteristics of nickel nanoparticles films produced by femtosecond laser ablation. Appl Phys Lett 85:4103–4105

    Article  CAS  ADS  Google Scholar 

  • Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007a) Properties of nanoparticles generated during femtosecond laser machining an air and water. J Appl Phys A 87:47–55

    Article  CAS  ADS  Google Scholar 

  • Barcikowski S, Menéndez-Manjón A, Chichkov B, Brikas M, Račiukaitis G (2007b) Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett 91:083113

    Google Scholar 

  • Besner S, Kabashin AV, Meunier M (2006) Fragmentation of colloidal nanoparticles by femtosecond laser-induced supercontinuum generation. Appl Phys Lett 89:233122

    Article  ADS  Google Scholar 

  • Bruinink A, Siragusano D, Ettel G, Brandsberg T, Brandsberg F, Petitmermet M, Müller B, Mayer J, Wintermantel E (2001) The stiffness of bone marrow cell–knit composites is increased during mechanical load. Biomaterials 22:3169–3178

    Article  CAS  PubMed  Google Scholar 

  • Frenzel J, Zhang Z, Neuking K, Eggeler G (2004) High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles. J Alloy Compd 385:214–223

    Article  CAS  Google Scholar 

  • Galbraith CG, Sheetz MP (1998) Forces on adhesive contacts affect cell function. Curr Opin Cell Biol 10:566–571

    Article  CAS  PubMed  Google Scholar 

  • González-Caballero F, Shilov VN (2006) Encyclopedia of surface and colloidal science. Taylor and Francis, Boca Raton, p 1932

  • Habijan T, Bremm O, Esenwein SA, Muhr G, Köller M (2007) Influence of nickel ions on human multipotent mesenchymal stromal cells (hMSCs). Mater Sci Eng 38:969–974

    CAS  Google Scholar 

  • Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, Gollwitzer HJ (2005) A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. Mater Sci Mater Med 16:883–888

    Article  CAS  Google Scholar 

  • Kabashin AV, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94:7941–7943

    Article  CAS  ADS  Google Scholar 

  • Kazakevich PV, Voronov VV, Simakin AV, Shafeev GA (2004) Production of copper and brass nanoparticles upon laser ablation in liquids. Quantum Electron 34(10):951–956

    Article  CAS  ADS  Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub H, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nanoletters 5(2):331–338

    CAS  ADS  Google Scholar 

  • Lee IC, Wang JH, Lee YT, Young TH (2007) The differentiation of mesenchymal stem cells by mechanical stress or and co-culture system. Biochem Biophys Res Commun 352:147–152

    Article  CAS  PubMed  Google Scholar 

  • Mafuné F, Kohno J, Takeda Y, Kondow T (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J Phys Chem B 105:9050–9056

    Article  Google Scholar 

  • Mafuné F, Kohno J, Takeda Y, Kondow T (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem 107:4218–4223

    Google Scholar 

  • Maloney WJ, Smith RL, Castro F, Schurman DJ (1993) Fibroblast response to metallic debris in vitro. Enzyme induction cell proliferation, and toxicity. J Bone Joint Surg 75:835–844

    CAS  PubMed  Google Scholar 

  • Mauro F (1969) Variations in sulfhydryl, disulfide, and protein content during synchronous and asynchronous growth of HeLa cells. Biophys J 9:1377–1397

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Chu JSF, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88:359–368

    Article  CAS  PubMed  Google Scholar 

  • Petersen S, Barcikowski S (2009) In situ bioconjugation—single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv Funct Mater 19:1167–1172

    Article  CAS  Google Scholar 

  • Pommerenke H, Schmidt C, Dürr F, Nebe B, Lüthen F, Müller P, Rychly J (2002) The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. J Bone Miner Res 17:603–611

    Article  CAS  PubMed  Google Scholar 

  • Pushin VG, Valiev RZ (2003) The nanostructured TiNi shape-memory alloys: new properties and applications. Solid State Phenom 94:13–24

    Article  CAS  Google Scholar 

  • Pyatenko A, Yamaguchi M, Suzuki M (2007) Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J Phys Chem C 111(22):7910–7917

    Article  CAS  Google Scholar 

  • Reichert J, Brückner S, Bartelt H, Jandt KD (2007) Tuning cell adhesion on PTFE surfaces by laser induced microstructures. Adv Eng Mater 9:1104–1113

    Article  Google Scholar 

  • Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580

    Article  PubMed  ADS  Google Scholar 

  • San Juan J, No ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4:415–419

    Article  CAS  PubMed  Google Scholar 

  • Shaw GA, Crone W (2004) Direct measurement of the nanoscale mechanical properties of NiTi shape memory alloy. Mater Res Soc Symp Proc 791:Q7.11.1–Q7.11.6

    Google Scholar 

  • Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol 8:51–54

    Article  CAS  PubMed  Google Scholar 

  • Spatz J (2004) Cell-nanostructure interactions. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology: concepts, applications and perspectives, 1st edn. Wiley-VCH, Weinheim, pp 53–56

    Google Scholar 

  • Tang W, Sundmann B, Sandström R, Quiu C (1999) New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Mater 50:3457–3468

    Article  Google Scholar 

  • Valiev RZ, Gunderov DV, Pushin VG (2005) Metastable nanostructured SPD Ti-Ni alloys with unique properties. J Metastable Nanocryst Mater 24–25:7–12

    Article  Google Scholar 

  • Volpe P, Eremenko-Volpe T (1970) Quantitative studies on cell proteins in suspension cultures. Eur J Biochem 12:195–200

    Article  CAS  PubMed  Google Scholar 

  • Waitz T, Karnthaler HP (2004) Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix. Acta Mater 52:5461–5469

    Article  CAS  Google Scholar 

  • Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater 52:137–147

    Article  CAS  Google Scholar 

  • Waitz T, Spisak D, Hafner J, Karnthaler HP (2005) Size-dependent martensitic transformation Path causing atomic-scale twinnig of nanocrystalline NiTi shape memory alloys. Europhys Lett 71:98–103

    Article  CAS  ADS  Google Scholar 

  • Wu MH, Mu R, Ueda A, Henderson DO (2003) Production of III–V nanocrystals by picosecond pulsed laser ablation. In: Materials Research Society symposium proceedings, vol 780

  • Yamamoto A, Honma R, Sumita M (1998) Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39:331–340

    Article  CAS  PubMed  Google Scholar 

  • Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25:2695–2711

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation within the TransRegio 37 “Micro- and Nanosystems in Medicine—Reconstruction of biologic Functions” and within the projects BA 3580/2-1 and CH-179/9-1. The authors thank Juan Manuel Bellver for carrying out part of the investigation on femtosecond laser ablation at the LZH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Barcikowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcikowski, S., Hahn, A., Guggenheim, M. et al. Biocompatibility of nanoactuators: stem cell growth on laser-generated nickel–titanium shape memory alloy nanoparticles. J Nanopart Res 12, 1733–1742 (2010). https://doi.org/10.1007/s11051-009-9834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9834-4

Keywords

Navigation