Skip to main content
Log in

Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We here report the synthesis of magnetite nanoparticle (MNP) grafted with poly (ethylene glycol) methyl ether methacrylate (PEGMA)-azobenzene acrylate (ABA) statistical copolymer via atom transfer radical polymerization (ATRP) for drug entrapment and photocontrolled release. MNP was synthesized via thermal decomposition of iron (III) acetylacetonate in benzyl alcohol and surface functionalized to obtain ATRP initiating sites. Molar compositions of the copolymer on MNP surface were systematically varied (100:0, 90:10, 70:30, and 50:50 of PEGMA:ABA, respectively) to obtain water dispersible particles with various amounts of azobenzene. The presence of polymeric shell on MNP core was evidenced by transmission electron microscopy (TEM). Drug loading and entrapment efficiencies as well as drug release behavior of the copolymer–MNP complexes were investigated. It was found that when percent of ABA in the copolymers was increased, entrapment and loading efficiencies of prednisolone model drug were enhanced. Releasing rate and percent of the released prednisolone of the complex exposed in UV light were slightly enhanced as compared to the system without UV irradiation. This copolymer–MNP complex with photocontrollable drug release and magnetic field-directed properties is warranted for further studies for potential uses as a novel drug delivery vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anders S, Sun S, Murray CB, Rettner CT, Best ME, Thomson T, Albrecht M, Thiele J-U, Fullerton EE, Terris BD (2002) Lithography and self-assembly for nanometer scale magnetism. Microelectron Eng 61–62:569–575

    Article  Google Scholar 

  • Archut A, Azzellini GC, Balzani V, Cola LD, Vgtle F (1998) Toward photoswitchable dendritic hosts Interaction between azobenzene-functionalized dendrimers and erosin. J Am Chem Soc 120:12187–12191

    Article  CAS  Google Scholar 

  • Aruna P, Rao BS (2009) Ionomeric poly(urethane semicarbazides) with azobenzene groups in the main chain-studies on photoswitching behavior and mechanical properties. React Funct Polym 69:20–26

    Article  CAS  Google Scholar 

  • Bucio E, Skewes P, Burillo G (2005) Synthesis and characterization of azo acrylates grafted onto polyethylene terephthalate by gamma irradiation. Nucl Instrum Methods Phys Res 236:301–306

    Article  CAS  Google Scholar 

  • Dokic J, Gothe M, Wirth J, Peters MV, Schwarz J, Hecht S, Saalfrank P (2009) Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data. J Phys Chem A 113:6763–6773

    Article  CAS  Google Scholar 

  • Fan QL, Neoh KG, Kang ET, Shuter B, Wang SC (2007) Solvent-free atom transfer radical polymerization for the preparation of poly (poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials 28:5426–5436

    Article  CAS  Google Scholar 

  • Fischer H (1999) The persistent radical effect in controlled radical polymerizations. J Polym Sci A 37:1885–1901

    Article  CAS  Google Scholar 

  • Fischer H (2001) The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chem Rev 101:3581–3610

    Article  CAS  Google Scholar 

  • Fujiwara M, Akiyama M, Hata M, Shiokawa K, Nomura R (2008) Photoinduced acceleration of the effluent rate of developing solvents in azobenzene-tethered silica gel. ACS Nano 2:1671–1681

    Article  CAS  Google Scholar 

  • Hermann High LR, Holder SJ, Penfold HV (2007) Synthesis of star polymers of styrene and alkyl (Meth)acrylates from a porphyrin initiator core via ATRP. Macromolecules 40:7157–7165

    Article  Google Scholar 

  • Hu F, Neoh KG, Cen L, Kang ET (2006) Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules 7:809–816

    Article  CAS  Google Scholar 

  • Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  • Kim SY, Lee YM, Kang JS (2005) Indomethacin-loaded methoxy poly(ethylene glycol)/poly(d, l-lactide) amphiphilic diblock copolymericnanospheres: pharmacokinetic and toxicity studies in rodents. J Biomed Mater Res A 74A:581–590

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Lee JH, Carraway ER, Schlautman MA, Yim S, Herbert BE (2004) Characterizing pyrene-Ag+ exciplex formation in aqueous and ethanolic solutions. J Photochem Photobiol A 167:141–148

    Article  CAS  Google Scholar 

  • Li Y, Deng Y, Tong X, Wang X (2006) Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer. Macromolecules 39:1108–1115

    Article  CAS  Google Scholar 

  • Liu KW, Bian S, Li L, Samuelson L, Kumar J, Tripathy S (2000) Enzymatic synthesis of photoactive poly(4-phenylazophenol). Chem Mater 12:1577–1584

    Article  CAS  Google Scholar 

  • Liu G, Yan X, Lu Z, Curda SA, Lal J (2005) One-Pot synthesis of block copolymer coated cobalt nanocrystals. Chem Mater 17:4985–4991

    Article  CAS  Google Scholar 

  • Maria PD, Fontana A, Gasbarri C, Siani G, Zaniratob P (2009) Kinetics of the Z–E isomerization of monosubstituted azobenzenes in polar organic and aqueous micellar solvents. Arkivoc 8:16–29

    Google Scholar 

  • Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45:2231–2235

    Article  CAS  Google Scholar 

  • Moineau G, Granel C, Dubois Ph, Jerome R, Teyssie P (1998) Controlled radical polymerization of methyl methacrylate initiated by an alkyl halide in the presence of the wilkinson catalyst. Macromolecules 31:542–544

    Article  CAS  Google Scholar 

  • Monteiro MJ, Adamy MM, Leeuwen BJ, Herk AM, Destarac M (2005) “Living” radical ab initio emulsion polymerization of styrene using a fluorinated xanthate agent. Macromolecules 38:1538–1541

    Article  CAS  Google Scholar 

  • Neugebauer D (2007) Graft copolymers with hydrophilic and hydrophobic polyether side chains. Polymer 48:4966–4973

    Article  CAS  Google Scholar 

  • Nishimura N, Kosako S, Sueishi Y (1984) The thermal isomerization of azobenzenes. III. Substituent, solvent, and pressure effect on the thermal isomerization of push-pull azobenzenes. Bull Chem Soc Jpn 57:1617–1625

    Article  CAS  Google Scholar 

  • Park EK, Lee SB, Lee YM (2001) Preparation and characterization of methoxy poly(ethylene glycol)/poly(e-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26:1053–1061

    Article  Google Scholar 

  • Pei W, Kumada H, Natusma T, Saito H, Ishio S (2007) Study on magnetite nanoparticles synthesized by chemical method. J Mag Magn Mater 310:2375–2377

    Article  CAS  Google Scholar 

  • Pinna N, Grancharov S, Beato P, Bonville P, Antonietti M, Niederberger M (2005) Magnetite nanocrystals: nonaqueous synthesis characterization and solubility. Chem Mater 17:3044–3049

    Article  CAS  Google Scholar 

  • Sellmyer DJ (2002) Strong magnets by self-assembly. Nature 420:374–375

    Article  CAS  Google Scholar 

  • Sharma L, Kimura T (2003) FT-IR investigation into the miscible interactions in new materials for optical devices. Polym Adv Technol 14:392–399

    Article  CAS  Google Scholar 

  • Sin SL, Gan LH, Hu X, Tam KC, Gan YY (2005) Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film. Macromolecules 38:3943–3948

    Article  CAS  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  • Sun Y, Ding X, Zheng Z, Cheng X, Hu X, Peng Y (2007) Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur Polym J 43:762–772

    Article  CAS  Google Scholar 

  • Teng X, Yang H (2003) Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core–shell nanoparticles. J Am Chem Soc 125:14559–14563

    Article  CAS  Google Scholar 

  • Teodorescu M, Matyjaszewski K (1999) Atom transfer radical polymerization of (Meth)acrylamides. Macromolecules 32:4826–4831

    Article  CAS  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    Article  CAS  Google Scholar 

  • Wang Y, Zhang M, Moers C, Chen S, Xu H, Wang Z, Zhang X, Li Z (2009) Block copolymer aggregates with photo-responsive switches: towards a controllable supramolecular container. Polymer 50:4821–4828

    Article  CAS  Google Scholar 

  • Winnik FM, Winnik MA, Tazuke S (1987) Interaction of hydroxypropylcellulose with aqueous surfactants: fluorescence probe studies and a look at pyrene-labeled polymer. J Phys Chem 91:594–597

    Article  CAS  Google Scholar 

  • Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16:2814–2818

    Article  CAS  Google Scholar 

  • Yager KG, Barrett CJ (2006) Novel photo-switching using azobenzene functional materials. J Photochem Photobiol A 182:250–261

    Article  CAS  Google Scholar 

  • Zhang J, Misra RDK (2007) Magnetic drug-targeting carrier encapsulated with thermo sensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater 3:838–850

    Article  CAS  Google Scholar 

  • Zhao H, Shipp DA (2003) Preparation of poly(styrene-block-butyl acrylate) block copolymer-silicate nanocomposites. Chem Mater 15:2693–2695

    Article  CAS  Google Scholar 

  • Zhou Y, Wang S, Ding B, Yang Z (2008) Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem Eng J 138:578–585

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Thailand Research Fund (TRF) (DBG5380001) and Naresuan University for financial funding. The National Research Council of Thailand (NRCT) is also acknowledged. The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education is gratefully acknowledged for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metha Rutnakornpituk.

Electronic supplementary material

Below is the link to the electronic supplementary material. Supporting Information Available: TGA thermograms of PEGMA-coated MNP and 90:10 PEGMA-ABA-coated MNP. A first-order plot of 100:0 PEGMA-ABA polymer and conversion plots of 70:30 PEGMA-ABA copolymer and 90:10 PEGMA-ABA copolymer.

Supplementary material 1 (TIFF 801 kb)

Supplementary material 2 (TIFF 472 kb)

Supplementary material 3 (TIFF 470 kb)

Supplementary material 4 (TIFF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theamdee, P., Traiphol, R., Rutnakornpituk, B. et al. Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer. J Nanopart Res 13, 4463–4477 (2011). https://doi.org/10.1007/s11051-011-0399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0399-7

Keywords

Navigation