Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2011

01.10.2011 | Research Paper

Correlation between structural and giant magnetoresistance properties of Fe–Ag nanogranular films

verfasst von: M. Tamisari, F. Spizzo, M. Sacerdoti, G. Battaglin, F. Ronconi

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fe x Ag1−x granular thin-films, with the atomic Fe concentration, x, ranging from 0 up to 0.5, were deposited by dc magnetron co-sputtering. The giant magnetoresistance (GMR) intensity is maximum at x I  = 0.32, while the maximum of GMR efficiency, γ, i.e., the change of GMR intensity for a unit change of reduced squared magnetization, is observed at x γ = 0.26. Owing to the spin-dependent scattering features, the GMR intensity and γ depend on both the concentration and the arrangement of the magnetic material. Therefore, to explain the difference between x I and x γ and to understand how the structural properties affect the magnetoresistive behaviour, we performed magnetization, Mössbauer and X-ray diffraction measurements as a function of x. X-ray data indicate that the granular films exhibit three different regimes: for x < 0.2, they can be described as a Fe–Ag solid solution; for 0.2 < x < 0.32 the Fe–Ag solid solution is still observed and very small Fe precipitates are found; finally, for x > 0.32, a Fe–Ag saturated solid solution is detected, containing bcc Fe clusters whose size is about 10 nm. Differently, for all the concentrations, magnetization data show the presence of Fe precipitates, whose size increases with x, and the Mössbauer investigation confirms this picture. We find that the samples grown at x = x γ display the finest Fe dispersion within the Ag matrix, as the Fe–Ag solid solution is nearly at saturation and the Fe cluster size is of the order of a few nanometers; this arrangement possibly maximizes the magnetic/non-magnetic interface extension thus enhancing the GMR efficiency. If x is slightly increased, the increase in total Fe content compensates the GMR efficiency reduction, so the GMR intensity maximum is observed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allia P, Knobel M, Tiberto P, Vinai F (1995) Magnetic properties and giant magnetoresistance of melt spun granular CuCo alloys. Phys Rev B 52(100):15398CrossRef Allia P, Knobel M, Tiberto P, Vinai F (1995) Magnetic properties and giant magnetoresistance of melt spun granular CuCo alloys. Phys Rev B 52(100):15398CrossRef
Zurück zum Zitat Allia P, Coisson M, Selvaggini V, Tiberto P, Vinai F (2001) Observation of isotropic gmr in paramagnetic Au80Fe20. Phys Rev B 63(100):180404CrossRef Allia P, Coisson M, Selvaggini V, Tiberto P, Vinai F (2001) Observation of isotropic gmr in paramagnetic Au80Fe20. Phys Rev B 63(100):180404CrossRef
Zurück zum Zitat Asano Y, Oguri A, Inoue J, Maekawa S (1994) Giant magnetoresistance in magnetic granular alloys. Phys Rev B 49(18):12831–12834CrossRef Asano Y, Oguri A, Inoue J, Maekawa S (1994) Giant magnetoresistance in magnetic granular alloys. Phys Rev B 49(18):12831–12834CrossRef
Zurück zum Zitat Baibich MN, Broto JM, Fert A, NguyenVan Dau F, Petroff F, Eitenne P, Friederich A, Chazelas J (1988) Giant magnetoresistance of Fe/Cr magnetic superlattices. Phys Rev Lett 61(21):2472CrossRef Baibich MN, Broto JM, Fert A, NguyenVan Dau F, Petroff F, Eitenne P, Friederich A, Chazelas J (1988) Giant magnetoresistance of Fe/Cr magnetic superlattices. Phys Rev Lett 61(21):2472CrossRef
Zurück zum Zitat Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker FT, Hutten A, Thomas G (1992) Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett 68(25):3745CrossRef Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker FT, Hutten A, Thomas G (1992) Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett 68(25):3745CrossRef
Zurück zum Zitat Bisero D, Angeli E, Pizzo L, Spizzo F, Vavassori P, Ronconi F (2003) Transport properties and magnetic disorder/order transition in Fe x Ag100−x films. J Magn Magn Mater 262(100):84CrossRef Bisero D, Angeli E, Pizzo L, Spizzo F, Vavassori P, Ronconi F (2003) Transport properties and magnetic disorder/order transition in Fe x Ag100−x films. J Magn Magn Mater 262(100):84CrossRef
Zurück zum Zitat Csontos M, Balogh J, Kapts D, Kiss LF, Kovcs A, Mihly G (2006) Magnetic and transport properties of Fe–Ag granular multilayers. Phys Rev B 73(18):184412CrossRef Csontos M, Balogh J, Kapts D, Kiss LF, Kovcs A, Mihly G (2006) Magnetic and transport properties of Fe–Ag granular multilayers. Phys Rev B 73(18):184412CrossRef
Zurück zum Zitat Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Instr Meth B 9(100):344CrossRef Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Instr Meth B 9(100):344CrossRef
Zurück zum Zitat Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle system. In Advances in Chemical Physics, vol XCVIII. John Wiley and Sons, Inc., Hoboken, p 283 Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle system. In Advances in Chemical Physics, vol XCVIII. John Wiley and Sons, Inc., Hoboken, p 283
Zurück zum Zitat Ferrari EF, da Silva FCS, Knobel M (1997) Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys Rev B 56(10):6086–6093 Ferrari EF, da Silva FCS, Knobel M (1997) Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys Rev B 56(10):6086–6093
Zurück zum Zitat Hansen M (1958) Constitution of binary alloys. McGraw-Hill book Co, New York Hansen M (1958) Constitution of binary alloys. McGraw-Hill book Co, New York
Zurück zum Zitat Hickey BJ, Howson MA, Musa SO, Wiser N (1995) Giant magnetoresistance for superparamagnetic particles: melt-spun granular CuCo. Phys Rev B 51(1):667–669CrossRef Hickey BJ, Howson MA, Musa SO, Wiser N (1995) Giant magnetoresistance for superparamagnetic particles: melt-spun granular CuCo. Phys Rev B 51(1):667–669CrossRef
Zurück zum Zitat Hume-Rothery William, Raynor GV (1962) The structure of metals and alloys. The Institute of metals, London Hume-Rothery William, Raynor GV (1962) The structure of metals and alloys. The Institute of metals, London
Zurück zum Zitat Kataoka N, Sumiyama K, Nakamura Y (1985) Magnetic properties of high-concentration Fe–Ag alloys produced by vapor quenching. J Phys F Met Phys 15(100):1405CrossRef Kataoka N, Sumiyama K, Nakamura Y (1985) Magnetic properties of high-concentration Fe–Ag alloys produced by vapor quenching. J Phys F Met Phys 15(100):1405CrossRef
Zurück zum Zitat Kataoka N, Sumiyama K, Nakamura Y (1988) Non-equilibrium crystalline Fe–Ag alloys vapour-quenched on liquid-nitrogen-cooled substrates. J Phys F Met Phys 18(100):1049CrossRef Kataoka N, Sumiyama K, Nakamura Y (1988) Non-equilibrium crystalline Fe–Ag alloys vapour-quenched on liquid-nitrogen-cooled substrates. J Phys F Met Phys 18(100):1049CrossRef
Zurück zum Zitat Kechrakos D, Trohidou N (2000) Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals. Phys Rev B 62(6):3941CrossRef Kechrakos D, Trohidou N (2000) Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals. Phys Rev B 62(6):3941CrossRef
Zurück zum Zitat Patterson AL (1939) The Scherrer formula for x-ray particle size determination. Phys Rev 56(10):978–982CrossRef Patterson AL (1939) The Scherrer formula for x-ray particle size determination. Phys Rev 56(10):978–982CrossRef
Zurück zum Zitat Rixecker G (2002) The difficulty of isolating boundary components in the Mössbauer spectra of ball-milled materials: iron and silver-iron alloys. Sol State Commun 122(100):299CrossRef Rixecker G (2002) The difficulty of isolating boundary components in the Mössbauer spectra of ball-milled materials: iron and silver-iron alloys. Sol State Commun 122(100):299CrossRef
Zurück zum Zitat Roy MK, Nambissan PMG, Verma HC (2002) Structural, thermal stability and defect studies of Fe–Ag alloy prepared by electrodeposition technique. J Alloys Com 345(100):183CrossRef Roy MK, Nambissan PMG, Verma HC (2002) Structural, thermal stability and defect studies of Fe–Ag alloy prepared by electrodeposition technique. J Alloys Com 345(100):183CrossRef
Zurück zum Zitat Shenoy GK, Wagner FE (1978) Mössbauer isomer shift. North-Holland, Amsterdam Shenoy GK, Wagner FE (1978) Mössbauer isomer shift. North-Holland, Amsterdam
Zurück zum Zitat Spizzo F, Angeli E, Bisero D, Da Re A, Ronconi F, Vavassori P (2004) Mössbauer investigation of sputtered Fe x Ag100-x films. J Magn Magn Mater 272(100):1169CrossRef Spizzo F, Angeli E, Bisero D, Da Re A, Ronconi F, Vavassori P (2004) Mössbauer investigation of sputtered Fe x Ag100-x films. J Magn Magn Mater 272(100):1169CrossRef
Zurück zum Zitat Wan H, Tsoukatos A, Hadjipanayis GC (1994) Direct evidence of phase separation in as-deposited Fe(Co)-Ag films with giant magnetoresistance. Phys Rev B 49(2):1524CrossRef Wan H, Tsoukatos A, Hadjipanayis GC (1994) Direct evidence of phase separation in as-deposited Fe(Co)-Ag films with giant magnetoresistance. Phys Rev B 49(2):1524CrossRef
Zurück zum Zitat Wang JQ, Xiao G (1994) Transition-metal granular solids: microstructure, magnetic properties and giant magnetoresistance. Phys Rev B 49(6):3982CrossRef Wang JQ, Xiao G (1994) Transition-metal granular solids: microstructure, magnetic properties and giant magnetoresistance. Phys Rev B 49(6):3982CrossRef
Zurück zum Zitat Wang JQ, Xiao G (1995) Large finite-size effect of giant magnetoresistance in magnetic granular thin films. Phys Rev B 51(9):5863CrossRef Wang JQ, Xiao G (1995) Large finite-size effect of giant magnetoresistance in magnetic granular thin films. Phys Rev B 51(9):5863CrossRef
Zurück zum Zitat Wood R (2009) Future hard disk drive systems. J Magn Magn Mater 321(100):555CrossRef Wood R (2009) Future hard disk drive systems. J Magn Magn Mater 321(100):555CrossRef
Zurück zum Zitat Xiao G, Liou SH, Levy A, Taylor JN, Chien CL (1986) Magnetic relaxation in Fe−SiO2 granular films. Phys Rev B 34(11):7573CrossRef Xiao G, Liou SH, Levy A, Taylor JN, Chien CL (1986) Magnetic relaxation in Fe−SiO2 granular films. Phys Rev B 34(11):7573CrossRef
Zurück zum Zitat Xiao JQ, Jiang JS, Chien CL (1992a) Giant magnetoresistance in the granular Co-Ag system. Phys Rev B 46(14):9266CrossRef Xiao JQ, Jiang JS, Chien CL (1992a) Giant magnetoresistance in the granular Co-Ag system. Phys Rev B 46(14):9266CrossRef
Zurück zum Zitat Xiao JQ, Jiang JS, Chien CL (1992b) Giant magnetoresistance in nonmultilayer magnetic system. Phys Rev Lett 68(25):3749CrossRef Xiao JQ, Jiang JS, Chien CL (1992b) Giant magnetoresistance in nonmultilayer magnetic system. Phys Rev Lett 68(25):3749CrossRef
Zurück zum Zitat Xiao G, Wang JQ, Xiong P (1993) Giant magnetoresistance and its evolution in the granular Fe x Ag100−x system. Appl Phys Lett 62(100):420CrossRef Xiao G, Wang JQ, Xiong P (1993) Giant magnetoresistance and its evolution in the granular Fe x Ag100−x system. Appl Phys Lett 62(100):420CrossRef
Zurück zum Zitat Yamagishi Y, Honda S, Inoue J, Itoh H (2010) Numerical simulation of giant magnetoresistance in magnetic multilayers and granular films. Phys Rev B 81(5):054445CrossRef Yamagishi Y, Honda S, Inoue J, Itoh H (2010) Numerical simulation of giant magnetoresistance in magnetic multilayers and granular films. Phys Rev B 81(5):054445CrossRef
Zurück zum Zitat Zhang S, Levy PM (1993) Conductivity and magnetoresistance in magnetic granular films. J Appl Phys 73(10):5315CrossRef Zhang S, Levy PM (1993) Conductivity and magnetoresistance in magnetic granular films. J Appl Phys 73(10):5315CrossRef
Metadaten
Titel
Correlation between structural and giant magnetoresistance properties of Fe–Ag nanogranular films
verfasst von
M. Tamisari
F. Spizzo
M. Sacerdoti
G. Battaglin
F. Ronconi
Publikationsdatum
01.10.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-011-0505-x

Weitere Artikel der Ausgabe 10/2011

Journal of Nanoparticle Research 10/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.