Skip to main content

Advertisement

Log in

Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The present study aims to explore the effect of high surface area (360.85 m2 g−1) silica nanoparticles (SNPs) (20–40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5–20 kg ha−1) in comparison with bulk silica (15–20 kg ha−1). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography–mass spectroscopy), and silica accumulation (high-resolution scanning electron microscopy). Growth characteristics were much influenced with increasing concentration of SNPs up to 15 kg ha−1 whereas at 20 kg ha−1, no significant increments were noticed. Silica accumulation in leaves was high at 10 and 15 kg ha−1 (0.57 and 0.82 %) concentrations of SNPs. The observed physiological changes show that the expression of organic compounds such as proteins, chlorophyll, and phenols favored to maize treated with nanosilica especially at 15 kg ha−1 compared with bulk silica and control. Nanoscale silica regimes at 15 kg ha−1 has a positive response of maize than bulk silica which help to improve the sustainable farming of maize crop as an alternative source of silica fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Carver TLW, Robbins MP, Thomas BJ, Troth K, Raistick N, Zeyen RJ (1998) Silicon deprivation enhances localized autofluorescent responses and phenylalanine ammonia-lyase activity in at attacked by Blumeria graminis. Physiol Mol Plant Pathol 52:245–257

    Article  CAS  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125

    Article  Google Scholar 

  • Epstein E (1999) Silicon. Ann Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  Google Scholar 

  • Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Ogawa S, Yahaya MS, Morita O (2003) Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Sci 164:349–356

    Article  CAS  Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N–Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90

    Google Scholar 

  • Hodson MJ, Evans DE (1995) Aluminium/silicon interactions in higher plants. J Exp Bot 46:161–171

    Article  CAS  Google Scholar 

  • Hossain MT, Mori R, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2002) Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. J Plant Res 115:23–27

    Article  CAS  Google Scholar 

  • Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioresour Technol 73:257–262

    Article  CAS  Google Scholar 

  • Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480

    Article  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  CAS  Google Scholar 

  • Kulikova ZL, Lux A (2010) Silicon influence on maize, Zea mays L. hybrids exposed to cadmium treatment. Bull Environ Contam Toxicol 85:243–250

    Article  Google Scholar 

  • Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  Google Scholar 

  • Lux A, Luxova M, Morita S, Abe J, Inanaga S (1999) Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice Oryza sativa L. Can J Bot 77:955–960

    CAS  Google Scholar 

  • Mahmood S, Hussain A, Saeed Z, Athar M (2005) Germination and seedling growth of corn (Zea mays L.) under varying levels of copper and zinc. Int J Environ Sci Technol 2(3):269–274

    CAS  Google Scholar 

  • Matichenkov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In: Datnoff LE, Snyder GH, Korndorfer H (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 209–219

    Chapter  Google Scholar 

  • Matichenkov VV, Calvert DV, Snyder GH (1999) Silicon fertilizers for citrus in florida. Proc Fla State Hortic Soc 112:5–8

    Google Scholar 

  • Miao BH, Han XG, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105:967–973

    Article  CAS  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519–4528

    Article  CAS  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Google Scholar 

  • Rafi MM, Epstein E, Falk RH (1997) Silicon deprivation causes abnormalities in wheat (Triticum aestivum L.). J Plant Physiol 152:497–501

    Article  Google Scholar 

  • Ranganathan S, Suvarchala V, Rajesh YBRD, Srinivasa Prasad M, Padmakumari AP, Voleti SR (2006) Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biol Plant 50(4):713–716

    Article  CAS  Google Scholar 

  • Savant NK, Snyder GH, Datnoff LE (1999) Silicon management and sustainable rice production. Adv Agron 58:151–199

    Article  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions. Curr Nanosci 8(6):1–7

    Google Scholar 

  • Wakabayashi K, Hoson T, Kamisaka S (1997) Osmotic stress suppresses the cell wall stiffening and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles. Plant Physiol 113:967–973

    CAS  Google Scholar 

  • Wei-min D, Ke-qin Z, Bin-wu D, Cheng-xiao S, Kang-le Z, Run C, Jie-yun Z (2005) Rapid determination of silicon content in rice. Rice Sci 12:145–147

    Google Scholar 

  • Yang Y, Li J, Shi H, Ke Y, Yuan J, Tang Z (2008) Alleviation of silicon on low-P stressed maize (Zea mays L.) seedlings under hydroponic culture conditions. World J Agric Sci 4:168–172

    Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan N, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3:180–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Defence Research and Development Organisation (ERIP/ER/0905113/M/01/1216), New Delhi for the financial support to carry out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R. et al. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14, 1294 (2012). https://doi.org/10.1007/s11051-012-1294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1294-6

Keywords

Navigation