Skip to main content

Advertisement

Log in

Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The bactericidal effect of silver nanoparticles (SNP) has lead to their application in several products mainly in the medicine field. This study analyzed the distribution, accumulation, and toxicity in principal organs of Wistar rats exposed to SNP suspensions by oral administration. Two sizes of washed SNP (14 and 36 nm) were prepared, characterized, and redispersed in deionized water. Each suspension was administrated to Wistar rats by oral way for 55 days; after finishing this treatment time, rats were sacrificed by anesthesia overdose. Organs were collected, processed, and prepared; then, accumulation and concentrations of SNP were obtained using inductively coupled plasma mass spectrometry (ICP-MS). Toxicity was determined by clinical chemistry and hematology from blood samples in three different periods; light microscopy (LM) and scanning electron microscopy (SEM) were applied to evaluate histopathology in tissues. Silver concentrations were higher in small intestine, followed by kidney, liver, and brain. Clinical chemistry and hematology showed altered values in blood urea nitrogen, total proteins, and mean corpuscular hemoglobin, concentration values had statistical difference in both groups (14 and 36 nm) (p < 0.05). LM, SEM, ICP-MS, clinical chemistry, and hematology tests suggest that the administration way, concentration, shape, size, presentation, administration time of SNP used in this study, do not change significantly these values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chaby G, Viseux V, Poulain JF, De Cagny B, Denoeux JP, Lok C (2005) Topical silver sulfadiazine-induced acute renal failure. Ann Dermatol Vener 132(11):891–893. doi:10.1016/S0151-9638(05)79509-0

    Article  CAS  Google Scholar 

  • Clift MJ, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232(3):418–427. doi:10.1016/j.taap.2008.06.009

    Article  CAS  Google Scholar 

  • Development OECD (1995) Repeated dose 28-day oral toxicity study in rodent. Guidelines for the test of chemicals, vol 407. Organization for Economic Cooperation and Development, Paris

  • Espinosa-Cristobal LF, Martinez-Castanon GA, Martinez–Martinez RE, Loyola-Rodriguez JP, Patino-Marin N, Reyes-Macias JF, Ruiz F (2009) Antibacterial effect of silver nanoparticles against Streptococcus mutans. Mater Lett 63(29):2603–2606. doi:10.1016/J.Matlet.2009.09.018

    Article  CAS  Google Scholar 

  • Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2. doi:10.1186/1743-8977-7-2

    Article  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983. doi:10.1016/J.Tiv.2005.06.034

    Article  CAS  Google Scholar 

  • Jeong GN, Jo UB, Ryu HY, Kim YS, Song KS, Yu IJ (2010) Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague-Dawley rats. Arch Toxicol 84(1):63–69. doi:10.1007/S00204-009-0469-0

    Article  CAS  Google Scholar 

  • Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19(10):857–871. doi:10.1080/08958370701432108

    Article  CAS  Google Scholar 

  • Khan MAM, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS (2011) Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett 6(1):434. doi:10.1186/1556-276x-6-434

    Article  Google Scholar 

  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20(6):575–583. doi:10.1080/08958370701874663

    Article  CAS  Google Scholar 

  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20. doi:10.1186/1743-8977-7-20

    Article  Google Scholar 

  • Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8. doi:10.1186/1743-8977-7-8

    Article  Google Scholar 

  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao XY, Vogel U, Mortensen A, Lam HR, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18. doi:10.1186/1743-8977-8-18

    Article  CAS  Google Scholar 

  • Martin-Perez S (2001) Técnica (MARPER) para la inyección intravenosa y obtención de sangre de la vena caudal de la rata. Revista Panamericana Animales de Experimentación 5(3)

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269. doi:10.1038/444267a

    Article  CAS  Google Scholar 

  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558. doi:10.1038/Sj.Bjp.0707130

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  CAS  Google Scholar 

  • Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105. doi:10.1111/j.1365-2796.2009.02187.x

    Article  CAS  Google Scholar 

  • Sardari RRR, Zarchi SR, Talebi A, Nasri S, Imani S, Khoradmehr A, Sheshde SAR (2012) Toxicological effects of silver nanoparticles in rats. Afr J Microbiol Res 6(27):5587–5593. doi:10.5897/Ajmr11.1070

    CAS  Google Scholar 

  • Scholars WWICf (2007) A nanotechnology consumer products inventory. http://www.nanotechproject.org/consumerproducts. Accessed 7 March 2012

  • Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D, Fubini B, Martra G, Fenoglio I, Borm PJ, Schins RP (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222(2):141–151. doi:10.1016/j.taap.2007.05.001

    Article  CAS  Google Scholar 

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108(2):452–461. doi:10.1093/Toxsci/Kfn246

    Article  CAS  Google Scholar 

  • Tang JL, Xiong L, Wang S, Wang JY, Liu L, Li JG, Yuan FQ, Xi TF (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932. doi:10.1166/Jnn.2009.1269

    Article  CAS  Google Scholar 

  • Tietz NW, Rinker AD, Shaw LM (1983) International Federation of Clinical Chemistry. IFCC methods for the measurement of catalytic concentration of enzymes. Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). IFCC Document Stage 2, Draft 1, 1983–03 with a view to an IFCC Recommendation. Clin Chim Acta 135(3):339F–367F

    Article  CAS  Google Scholar 

  • Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W (2006) Silver coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60(3):648–652. doi:10.1097/01.Ta.0000208126.22089.B6

    Article  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):U109–U178. doi:10.1080/17435390902725914

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT Grant CB-169020), Programa de Mejoramiento del Profesorado (PROMEP), and Fondo de Apoyo a la Investigación (FAI) of Universidad Autónoma de San Luis Potosí (UASLP). L. F. Espinosa-Cristóbal would like to thank CONACYT for its support with the Scholarship No. 206310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Martinez-Castañon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa-Cristobal, L.F., Martinez-Castañon, G.A., Loyola-Rodriguez, J.P. et al. Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats. J Nanopart Res 15, 1702 (2013). https://doi.org/10.1007/s11051-013-1702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1702-6

Keywords

Navigation