Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2014

01.04.2014 | Research Paper

Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp.

verfasst von: Liz M. Rösken, Susanne Körsten, Christian B. Fischer, Andreas Schönleber, Sander van Smaalen, Stefan Geimer, Stefan Wehner

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Customized metal nanoparticles are highly relevant in industrial processes, where they are used as catalysts and therefore needed on a large scale. An extremely economically and environmentally friendly way to produce metal nanoparticles is microbial biosynthesis, meaning the biosorption and bioreduction of diluted metal ions to zero valent (metal) nanoparticles. To maintain the key advantage of biosynthesis, including eco friendliness, a bioreactor (e.g., bacteria) has to be harmless by itself. Here, the ability of the cyanobacteria Anabaena sp. (SAG 12.82) is shown to fulfill both needs: bioreduction of Au3+ ions to Au0 and the subsequent formation of crystalline Au0-nanoparticles as well as absence of the release of toxic substances (e.g., anatoxin-a). The time-dependent growth of the nanoparticles is recorded by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) over a range of several days. Formation of nanoparticles starts within the first minutes at the heterocyst polysaccharide layer (HEP). After 4 h, the dominating amount of nanoparticles is found in the vegetative cells. The bioproduced nanoparticles are found in both cell types, mainly located along the thylakoid membranes of the vegetative cells and have a final average size of 9 nm within the examined timescale of a few days.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109CrossRef Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109CrossRef
Zurück zum Zitat Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A 145:1–44CrossRef Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A 145:1–44CrossRef
Zurück zum Zitat Bansal V, Ramanathan R, Bhargava SK (2011) Fungus-mediated biological approaches towards ‘green’ synthesis of oxide nanomaterials. Aust J Chem 64:279–293CrossRef Bansal V, Ramanathan R, Bhargava SK (2011) Fungus-mediated biological approaches towards ‘green’ synthesis of oxide nanomaterials. Aust J Chem 64:279–293CrossRef
Zurück zum Zitat Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interface Sci 179–182:150–168CrossRef Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interface Sci 179–182:150–168CrossRef
Zurück zum Zitat Baptista MS, Vasconcelos MT (2006) Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Crit Rev Microbiol 32:127–137CrossRef Baptista MS, Vasconcelos MT (2006) Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Crit Rev Microbiol 32:127–137CrossRef
Zurück zum Zitat Brayner R, Barberousse H, Hernadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708CrossRef Brayner R, Barberousse H, Hernadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708CrossRef
Zurück zum Zitat Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74CrossRef Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74CrossRef
Zurück zum Zitat Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012a) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288CrossRef Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012a) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288CrossRef
Zurück zum Zitat Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012b) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanoparticle Res 14:883–889CrossRef Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012b) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanoparticle Res 14:883–889CrossRef
Zurück zum Zitat De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17CrossRef De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17CrossRef
Zurück zum Zitat Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J, Jones IP, Attard GA, Wood J, Selenska-Pobell S, Macaskie LE (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9:1705–1712CrossRef Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J, Jones IP, Attard GA, Wood J, Selenska-Pobell S, Macaskie LE (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9:1705–1712CrossRef
Zurück zum Zitat Durán Pachón L, Rothenberg G (2008) Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organomet Chem 22:288–299CrossRef Durán Pachón L, Rothenberg G (2008) Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organomet Chem 22:288–299CrossRef
Zurück zum Zitat Eriksson S, Nylén U, Rojas S, Boutonnet M (2004) Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl Catal A 265:207–219CrossRef Eriksson S, Nylén U, Rojas S, Boutonnet M (2004) Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl Catal A 265:207–219CrossRef
Zurück zum Zitat Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999) The toxicity of cyanobacterial toxins in the mouse: II anatoxin-a. Hum Exp Toxicol 18:168–173CrossRef Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999) The toxicity of cyanobacterial toxins in the mouse: II anatoxin-a. Hum Exp Toxicol 18:168–173CrossRef
Zurück zum Zitat Flores E, Herrero A (2011) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50CrossRef Flores E, Herrero A (2011) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50CrossRef
Zurück zum Zitat Focsan M, Ardelean II, Craciun C, Astilean S (2011) Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnology 22:485101CrossRef Focsan M, Ardelean II, Craciun C, Astilean S (2011) Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnology 22:485101CrossRef
Zurück zum Zitat Gaikwad AN, Verschuren P, Eiser E, Rothenberg G (2006) A simple method for measuring the size of metal nanoclusters in solution. J Phys Chem B 110:17437–17443CrossRef Gaikwad AN, Verschuren P, Eiser E, Rothenberg G (2006) A simple method for measuring the size of metal nanoclusters in solution. J Phys Chem B 110:17437–17443CrossRef
Zurück zum Zitat Gaikwad AN, Verschuren P, Kinge S, Rothenberg G, Eiser E (2008) Matter of age: growing anisotropic gold nanocrystals in organic media. Phys Chem Chem Phys 10:951–956CrossRef Gaikwad AN, Verschuren P, Kinge S, Rothenberg G, Eiser E (2008) Matter of age: growing anisotropic gold nanocrystals in organic media. Phys Chem Chem Phys 10:951–956CrossRef
Zurück zum Zitat Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRef Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRef
Zurück zum Zitat Gonzalez CM, Liu Y, Scaiano JC (2009) Photochemical strategies for the facile synthesis of gold-silver alloy and core-shell bimetallic nanoparticles. J Phys Chem C 113:11861–11867CrossRef Gonzalez CM, Liu Y, Scaiano JC (2009) Photochemical strategies for the facile synthesis of gold-silver alloy and core-shell bimetallic nanoparticles. J Phys Chem C 113:11861–11867CrossRef
Zurück zum Zitat Hsu S-W, On K, Gao B, Tao AR (2011) Polyelectrolyte-templated synthesis of bimetallic nanoparticles. Langmuir 27:8494–8499CrossRef Hsu S-W, On K, Gao B, Tao AR (2011) Polyelectrolyte-templated synthesis of bimetallic nanoparticles. Langmuir 27:8494–8499CrossRef
Zurück zum Zitat Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRef Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRef
Zurück zum Zitat Karnani RL, Chowdhary A (2013) Biosynthesis of silver nanoparticle by eco-friendly method. Indian J Nano Sci 1:25–31 Karnani RL, Chowdhary A (2013) Biosynthesis of silver nanoparticle by eco-friendly method. Indian J Nano Sci 1:25–31
Zurück zum Zitat Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4-ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29CrossRef Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4-ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29CrossRef
Zurück zum Zitat Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306CrossRef Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306CrossRef
Zurück zum Zitat Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113CrossRef Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113CrossRef
Zurück zum Zitat Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452CrossRef Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452CrossRef
Zurück zum Zitat Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)–thiosulfate and gold(III)–chloride complexes. Langmuir 22:2780–2787CrossRef Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)–thiosulfate and gold(III)–chloride complexes. Langmuir 22:2780–2787CrossRef
Zurück zum Zitat Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309CrossRef Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309CrossRef
Zurück zum Zitat Lengke MF, Fleet ME, Southarn G (2007) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir 23:8982–8987CrossRef Lengke MF, Fleet ME, Southarn G (2007) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir 23:8982–8987CrossRef
Zurück zum Zitat Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425CrossRef Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425CrossRef
Zurück zum Zitat Luz A, Malek-Luz A, Feldmann C (2013) Photochemical synthesis of particulate main-group elements and compounds. Chem Mater 25:202–209CrossRef Luz A, Malek-Luz A, Feldmann C (2013) Photochemical synthesis of particulate main-group elements and compounds. Chem Mater 25:202–209CrossRef
Zurück zum Zitat Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRef Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRef
Zurück zum Zitat Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13CrossRef Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13CrossRef
Zurück zum Zitat Petricek V, Dusek M, Palatinus L (2006) Jana 2006. The crystallographic computing system. Institute of Physics, Praha Petricek V, Dusek M, Palatinus L (2006) Jana 2006. The crystallographic computing system. Institute of Physics, Praha
Zurück zum Zitat Rai M, Duran N (2011) Metal nanoparticles in microbiology. Springer-Verlag, BerlinCrossRef Rai M, Duran N (2011) Metal nanoparticles in microbiology. Springer-Verlag, BerlinCrossRef
Zurück zum Zitat Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27:714–719CrossRef Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27:714–719CrossRef
Zurück zum Zitat Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci 3:145–151CrossRef Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci 3:145–151CrossRef
Zurück zum Zitat Sintubin L, Windt W, Dick J, Mast J, Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749CrossRef Sintubin L, Windt W, Dick J, Mast J, Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749CrossRef
Zurück zum Zitat Smith DK, Jenkins R (1996) International centre for diffraction data (ICDD): powder diffraction file PDF-2, release 2003 reference number 00-004-0784. J Res Natl Inst Stand Technol 101:259CrossRef Smith DK, Jenkins R (1996) International centre for diffraction data (ICDD): powder diffraction file PDF-2, release 2003 reference number 00-004-0784. J Res Natl Inst Stand Technol 101:259CrossRef
Zurück zum Zitat Swanson HE, Tatge E (1953). Natl. Bur. Stand. (U.S.) Circular 539:33 Swanson HE, Tatge E (1953). Natl. Bur. Stand. (U.S.) Circular 539:33
Zurück zum Zitat Tao F, Zhang S, Nguyen L, Zhang X (2012) Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chem Soc Rev 41:7980–7993CrossRef Tao F, Zhang S, Nguyen L, Zhang X (2012) Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chem Soc Rev 41:7980–7993CrossRef
Zurück zum Zitat Tsygankov AA (2007) Nitrogen-fixing cyanobacteria: a review. Appl Biochem Microbiol 43:250–259CrossRef Tsygankov AA (2007) Nitrogen-fixing cyanobacteria: a review. Appl Biochem Microbiol 43:250–259CrossRef
Zurück zum Zitat Wang J, Boelens HFM, Thathagar MB, Rothenberg G (2004) In situ spectroscopic analysis of nanocluster formation. ChemPhysChem 5:93–98CrossRef Wang J, Boelens HFM, Thathagar MB, Rothenberg G (2004) In situ spectroscopic analysis of nanocluster formation. ChemPhysChem 5:93–98CrossRef
Zurück zum Zitat Warren SC, Jackson AC, Cater-Cyker ZD, DiSalvo FJ, Wiesner U (2007) Nanoparticle synthesis via the photochemical polythiol process. J Am Chem Soc 129:10072–10073CrossRef Warren SC, Jackson AC, Cater-Cyker ZD, DiSalvo FJ, Wiesner U (2007) Nanoparticle synthesis via the photochemical polythiol process. J Am Chem Soc 129:10072–10073CrossRef
Zurück zum Zitat Wegner K, Pratsinis SE, Köhler M (2004) Nanomaterialien und Nanotechnologie. In Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) Winnacker-Kuchler: Chemische Technik: Prozesse und Produkte. Band 2: Neue Technologien, 5th edn. Wiley-VCH Verlag & Co. KGaA, Weinheim Wegner K, Pratsinis SE, Köhler M (2004) Nanomaterialien und Nanotechnologie. In Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) Winnacker-Kuchler: Chemische Technik: Prozesse und Produkte. Band 2: Neue Technologien, 5th edn. Wiley-VCH Verlag & Co. KGaA, Weinheim
Zurück zum Zitat Zadvorny O, Zorin N, Gogotov I (2006) Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Arch Microbiol 184:279–285CrossRef Zadvorny O, Zorin N, Gogotov I (2006) Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Arch Microbiol 184:279–285CrossRef
Zurück zum Zitat Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494CrossRef Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494CrossRef
Metadaten
Titel
Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp.
verfasst von
Liz M. Rösken
Susanne Körsten
Christian B. Fischer
Andreas Schönleber
Sander van Smaalen
Stefan Geimer
Stefan Wehner
Publikationsdatum
01.04.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2370-x

Weitere Artikel der Ausgabe 4/2014

Journal of Nanoparticle Research 4/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.