Skip to main content
Erschienen in: Journal of Nanoparticle Research 6/2015

01.06.2015 | Research Paper

Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

verfasst von: Fanny Hoeng, Aurore Denneulin, Charles Neuman, Julien Bras

Erschienen in: Journal of Nanoparticle Research | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29(1):6–14CrossRef Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29(1):6–14CrossRef
Zurück zum Zitat Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12:167–172. doi:10.1021/bm1010905 CrossRef Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12:167–172. doi:10.​1021/​bm1010905 CrossRef
Zurück zum Zitat Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568. doi:10.1021/nl034757a CrossRef Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568. doi:10.​1021/​nl034757a CrossRef
Zurück zum Zitat Campbell M, Liu Q, Sanders A et al (2014) Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods. Materials 7:3021–3033. doi:10.3390/ma7043021 CrossRef Campbell M, Liu Q, Sanders A et al (2014) Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods. Materials 7:3021–3033. doi:10.​3390/​ma7043021 CrossRef
Zurück zum Zitat Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137. doi:10.1039/b910517d CrossRef Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137. doi:10.​1039/​b910517d CrossRef
Zurück zum Zitat Dagnon KL, Way AE, Carson SO et al (2013) Controlling the rate of water-induced switching in mechanically dynamic cellulose nanocrystal composites. Macromolecules 46:8203–8212. doi:10.1021/ma4008187 CrossRef Dagnon KL, Way AE, Carson SO et al (2013) Controlling the rate of water-induced switching in mechanically dynamic cellulose nanocrystal composites. Macromolecules 46:8203–8212. doi:10.​1021/​ma4008187 CrossRef
Zurück zum Zitat Dufresne A(2012) Nanocellulose: from nature to high performance tailored materials. 460 Dufresne A(2012) Nanocellulose: from nature to high performance tailored materials. 460
Zurück zum Zitat Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066. doi:10.1021/bm1000247 CrossRef Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066. doi:10.​1021/​bm1000247 CrossRef
Zurück zum Zitat Follain N, Marais M-F, Montanari S, Vignon MR (2010) Coupling onto surface carboxylated cellulose nanocrystals. Polymer 51:5332–5344CrossRef Follain N, Marais M-F, Montanari S, Vignon MR (2010) Coupling onto surface carboxylated cellulose nanocrystals. Polymer 51:5332–5344CrossRef
Zurück zum Zitat García-Barrasa J, López-de-Luzuriaga JM, Monge M (2010) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem 9:7–19. doi:10.2478/s11532-010-0124-x CrossRef García-Barrasa J, López-de-Luzuriaga JM, Monge M (2010) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem 9:7–19. doi:10.​2478/​s11532-010-0124-x CrossRef
Zurück zum Zitat Hemraz UD, Boluk Y, Sunasee R (2013) Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Can J Chem 91:974–981. doi:10.1139/cjc-2013-0165 CrossRef Hemraz UD, Boluk Y, Sunasee R (2013) Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Can J Chem 91:974–981. doi:10.​1139/​cjc-2013-0165 CrossRef
Zurück zum Zitat Hoeng F, Denneulin A, Bras J, Neuman C (2014) Suspension stable de nanofils d'argent et son procédé de fabrication. Patent FR N°15/53131, 10 April 2014 Hoeng F, Denneulin A, Bras J, Neuman C (2014) Suspension stable de nanofils d'argent et son procédé de fabrication. Patent FR N°15/53131, 10 April 2014
Zurück zum Zitat Ifuku S, Tsuji M, Morimoto M et al (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10:2714–2717CrossRef Ifuku S, Tsuji M, Morimoto M et al (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10:2714–2717CrossRef
Zurück zum Zitat Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir 26:17919–17925. doi:10.1021/la1028405 CrossRef Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir 26:17919–17925. doi:10.​1021/​la1028405 CrossRef
Zurück zum Zitat Koga H, Tokunaga E, Hidaka M et al (2010) Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem Commun (Camb) 46:8567–8569. doi:10.1039/c0cc02754e CrossRef Koga H, Tokunaga E, Hidaka M et al (2010) Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem Commun (Camb) 46:8567–8569. doi:10.​1039/​c0cc02754e CrossRef
Zurück zum Zitat Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. doi:10.1039/c3nr06761k CrossRef Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. doi:10.​1039/​c3nr06761k CrossRef
Zurück zum Zitat Liu H, Wang D, Song Z, Shang S (2010) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18:67–74. doi:10.1007/s10570-010-9464-0 CrossRef Liu H, Wang D, Song Z, Shang S (2010) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18:67–74. doi:10.​1007/​s10570-010-9464-0 CrossRef
Zurück zum Zitat Liu H, Song J, Shang S et al (2012) Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Appl Mater Interfaces 4(5):2413–2419CrossRef Liu H, Song J, Shang S et al (2012) Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Appl Mater Interfaces 4(5):2413–2419CrossRef
Zurück zum Zitat Liu Q, Campbell MG, Evans JS, Smalyukh II (2014) Nanocrystals: orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals (Adv. Mater. 42/2014). Adv Mater 26:7133–7133. doi:10.1002/adma.201470287 CrossRef Liu Q, Campbell MG, Evans JS, Smalyukh II (2014) Nanocrystals: orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals (Adv. Mater. 42/2014). Adv Mater 26:7133–7133. doi:10.​1002/​adma.​201470287 CrossRef
Zurück zum Zitat Martins NCT, Freire CSR, Pinto RJB et al (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19:1425–1436. doi:10.1007/s10570-012-9713-5 CrossRef Martins NCT, Freire CSR, Pinto RJB et al (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19:1425–1436. doi:10.​1007/​s10570-012-9713-5 CrossRef
Zurück zum Zitat Mohammad K, Uddin A, Rojas OJ, et al (2014) Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Mater 1–10 Mohammad K, Uddin A, Rojas OJ, et al (2014) Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Mater 1–10
Zurück zum Zitat Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671. doi:10.1021/ma048396c CrossRef Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671. doi:10.​1021/​ma048396c CrossRef
Zurück zum Zitat Padalkar S, Capadona JR, Rowan SJ et al (2010) Natural biopolymers : novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502CrossRef Padalkar S, Capadona JR, Rowan SJ et al (2010) Natural biopolymers : novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502CrossRef
Zurück zum Zitat Quarta A, Ragusa A, Deka S et al (2009) Bioconjugation of rod-shaped fluorescent nanocrystals for efficient targeted cell labeling. Langmuir 25:12614–12622. doi:10.1021/la901831y CrossRef Quarta A, Ragusa A, Deka S et al (2009) Bioconjugation of rod-shaped fluorescent nanocrystals for efficient targeted cell labeling. Langmuir 25:12614–12622. doi:10.​1021/​la901831y CrossRef
Zurück zum Zitat Querejeta-Fernández A, Chauve G, Methot M et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136:4788–4793. doi:10.1021/ja501642p CrossRef Querejeta-Fernández A, Chauve G, Methot M et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136:4788–4793. doi:10.​1021/​ja501642p CrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003 CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.​1177/​0040517559029010​03 CrossRef
Zurück zum Zitat Shin Y, Bae I, Arey BW et al (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112(13):4844–4848CrossRef Shin Y, Bae I, Arey BW et al (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112(13):4844–4848CrossRef
Zurück zum Zitat Siqueira G, Abdillahi H, Bras J, Dufresne A (2009) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298. doi:10.1007/s10570-009-9384-z CrossRef Siqueira G, Abdillahi H, Bras J, Dufresne A (2009) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298. doi:10.​1007/​s10570-009-9384-z CrossRef
Zurück zum Zitat Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef
Zurück zum Zitat Van Hyning DL, Zukoski CF (1998) Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14(24):7034–7046CrossRef Van Hyning DL, Zukoski CF (1998) Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14(24):7034–7046CrossRef
Zurück zum Zitat Wu M, Kuga S, Huang Y (2008) Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir Acs J Surf Colloids 24:10494–10497CrossRef Wu M, Kuga S, Huang Y (2008) Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir Acs J Surf Colloids 24:10494–10497CrossRef
Zurück zum Zitat Yang J, Han C-R, Zhang X-M et al (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086. doi:10.1021/ma500729q CrossRef Yang J, Han C-R, Zhang X-M et al (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086. doi:10.​1021/​ma500729q CrossRef
Metadaten
Titel
Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation
verfasst von
Fanny Hoeng
Aurore Denneulin
Charles Neuman
Julien Bras
Publikationsdatum
01.06.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 6/2015
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-3044-z

Weitere Artikel der Ausgabe 6/2015

Journal of Nanoparticle Research 6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.