Skip to main content
Erschienen in: Journal of Nanoparticle Research 11/2018

01.11.2018 | Research Paper

Electron transport through double-walled carbon nanotube quantum dots

verfasst von: Saurabh Srivastava, Brijesh Kumar Mishra

Erschienen in: Journal of Nanoparticle Research | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electron transport through double-walled carbon nanotube quantum dots (DWCNT-QD) was calculated using full valence description of the electronic structure. Rolling pin model was used to measure the electron transport through both the walls of the DWCNT-QD. Three combinations of metallic (M) and zigzag semiconductor (S) nanotubes, i.e., M@S, S@M, and S@S, were studied for various diameters, and the corresponding IV curves were obtained using the Landauer method. The transmission through the nanotubes was calculated using elastic scattering quantum chemistry (ESQC) method. A significant difference of 0.5 to 1.5 μA in the current through the two walls of the DWCNT was found for the (4, 4)@(10, 9) and (5, 4)@(10, 9). In all other cases, the behavior of both the tubes in a DWCNT-QD was very similar to that of the corresponding single-walled carbon nanotube quantum dots (SWCNT-QD). The intermixing and correlation of the electronic states of the inner and outer shells of the DWCNTs responsible for such results were analyzed and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115:485–491CrossRef Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115:485–491CrossRef
Zurück zum Zitat Ajayan PM, Iijima S (1991) Capillarity-induced filling of carbon nanotubes. Nature 361:333–334CrossRef Ajayan PM, Iijima S (1991) Capillarity-induced filling of carbon nanotubes. Nature 361:333–334CrossRef
Zurück zum Zitat Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362:522–525CrossRef Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362:522–525CrossRef
Zurück zum Zitat Bachtold A, Strunk C, Salvetat JP, Bonard JM, Forró L, Nussbaumer T, Schönenberger C (1999) Aharonov-bohm oscillations in carbon nanotubes. Nature 397:673CrossRef Bachtold A, Strunk C, Salvetat JP, Bonard JM, Forró L, Nussbaumer T, Schönenberger C (1999) Aharonov-bohm oscillations in carbon nanotubes. Nature 397:673CrossRef
Zurück zum Zitat Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRef Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRef
Zurück zum Zitat Bandaru PR, Daraio C, Jin S, Rao AM (2005) Novel electrical switching behaviour and logic in carbon nanotube y-junctions. Nat Mater 4:663CrossRef Bandaru PR, Daraio C, Jin S, Rao AM (2005) Novel electrical switching behaviour and logic in carbon nanotube y-junctions. Nat Mater 4:663CrossRef
Zurück zum Zitat Bourlon B, Miko C, Forro L, Glattli D, Bachtold A (2004) Determination of the intershell conductance in multiwalled carbon nanotubes. Phys Rev Lett 93:176,806CrossRef Bourlon B, Miko C, Forro L, Glattli D, Bachtold A (2004) Determination of the intershell conductance in multiwalled carbon nanotubes. Phys Rev Lett 93:176,806CrossRef
Zurück zum Zitat Buttiker M, Y Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215CrossRef Buttiker M, Y Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215CrossRef
Zurück zum Zitat Collins PG, Avouris P (2002) Multishell conduction in multiwalled carbon nanotubes. Appl Phys A 74:329–332CrossRef Collins PG, Avouris P (2002) Multishell conduction in multiwalled carbon nanotubes. Appl Phys A 74:329–332CrossRef
Zurück zum Zitat Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86:3128CrossRef Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86:3128CrossRef
Zurück zum Zitat Doumergue P, Pizzagalli L, Joachim C, Altibelli A, Baratoff A (1999) Conductance of a finite missing hydrogen atomic line on si(001)-(2x1)-h. Phys Rev B 59:15,910–15,916CrossRef Doumergue P, Pizzagalli L, Joachim C, Altibelli A, Baratoff A (1999) Conductance of a finite missing hydrogen atomic line on si(001)-(2x1)-h. Phys Rev B 59:15,910–15,916CrossRef
Zurück zum Zitat Fujiwara A, Tomiyama K, Suematsu H (1999) Quantum interference of electrons in multiwall carbon nanotubes. Phys Rev B 60:13,492CrossRef Fujiwara A, Tomiyama K, Suematsu H (1999) Quantum interference of electrons in multiwall carbon nanotubes. Phys Rev B 60:13,492CrossRef
Zurück zum Zitat Fujisawa K, Kim HJ, Go SH, Muramatsu H, Hayashi T, Endo M, Hirschmann TC, Dresselhaus MS, Kim YA, Araujo PT (2016) A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl Sci 6:109CrossRef Fujisawa K, Kim HJ, Go SH, Muramatsu H, Hayashi T, Endo M, Hirschmann TC, Dresselhaus MS, Kim YA, Araujo PT (2016) A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl Sci 6:109CrossRef
Zurück zum Zitat Ghedjatti A, Magnin Y, Fossard F, Wang G, Amara H, Flahaut E, Lauret JS, Loiseau A (2017) Structural properties of double-walled carbon nanotubes driven by mechanical interlayer coupling. arXiv:1701.05832 Ghedjatti A, Magnin Y, Fossard F, Wang G, Amara H, Flahaut E, Lauret JS, Loiseau A (2017) Structural properties of double-walled carbon nanotubes driven by mechanical interlayer coupling. arXiv:1701.​05832
Zurück zum Zitat Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579CrossRef Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579CrossRef
Zurück zum Zitat Hasan T, Sun Z, Tan PH, Popa D, Flahaut E, Kelleher EJR, Bonaccorso F, Wang F, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari AC (2014) Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 8:4836–4847CrossRef Hasan T, Sun Z, Tan PH, Popa D, Flahaut E, Kelleher EJR, Bonaccorso F, Wang F, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari AC (2014) Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 8:4836–4847CrossRef
Zurück zum Zitat Hashimoto A, Suenaga K, Urita K, Shimada T, Sugai T, Bandow S, Shinohara H, Iijima S (2005) Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys Rev Lett 94:045,504CrossRef Hashimoto A, Suenaga K, Urita K, Shimada T, Sugai T, Bandow S, Shinohara H, Iijima S (2005) Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys Rev Lett 94:045,504CrossRef
Zurück zum Zitat Hoffmann R (1963) An extended hückel theory. I. Hydrocarbons. J Chem Phys 39:1397–1412CrossRef Hoffmann R (1963) An extended hückel theory. I. Hydrocarbons. J Chem Phys 39:1397–1412CrossRef
Zurück zum Zitat Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
Zurück zum Zitat Jarosz PR, Shaukat A, Schauerman CM, Cress CD, Kladitis PE, Ridgley RD, Landi BJ (2012) High-performance, lightweight coaxial cable from carbon nanotube conductors. ACS Appl Mater Interfaces 4:1103–1109CrossRef Jarosz PR, Shaukat A, Schauerman CM, Cress CD, Kladitis PE, Ridgley RD, Landi BJ (2012) High-performance, lightweight coaxial cable from carbon nanotube conductors. ACS Appl Mater Interfaces 4:1103–1109CrossRef
Zurück zum Zitat Kociak M, Suenaga K, Hirahara K, Saito Y, Nakahira T, Iijima S (2002) Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys Rev Lett 89:155,501CrossRef Kociak M, Suenaga K, Hirahara K, Saito Y, Nakahira T, Iijima S (2002) Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys Rev Lett 89:155,501CrossRef
Zurück zum Zitat Latgé A, Grimm D, Ferreira MS (2006) Magnetic field effvects of double-walled carbon nanotubes. Braz J Phys 36:898–901CrossRef Latgé A, Grimm D, Ferreira MS (2006) Magnetic field effvects of double-walled carbon nanotubes. Braz J Phys 36:898–901CrossRef
Zurück zum Zitat Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82:2491CrossRef Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82:2491CrossRef
Zurück zum Zitat Li S, Yu Z, Yen SF, Tang WC, Burke PJ (2004) Carbon nanotube transistor operation at 2.6 ghz. Nano Lett 4:753CrossRef Li S, Yu Z, Yen SF, Tang WC, Burke PJ (2004) Carbon nanotube transistor operation at 2.6 ghz. Nano Lett 4:753CrossRef
Zurück zum Zitat Liu K, Wang W, Xu Z, Bai X, Wang E, Yao Y, Zhang J, Liu Z (2009) Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J Am Chem Soc 131:62–63CrossRef Liu K, Wang W, Xu Z, Bai X, Wang E, Yao Y, Zhang J, Liu Z (2009) Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J Am Chem Soc 131:62–63CrossRef
Zurück zum Zitat Liu K, Hong X, Wu M, Xiao F, Wang W, Bai X, Ager JW, Aloni S, Zettl A, Wang E, Wang F (2013) Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nat Comm 4:1375CrossRef Liu K, Hong X, Wu M, Xiao F, Wang W, Bai X, Ager JW, Aloni S, Zettl A, Wang E, Wang F (2013) Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nat Comm 4:1375CrossRef
Zurück zum Zitat Liu K, Jin C, Hong X, Kim J, Zettl A, Wang E, Wang F (2014) Van der waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat Phys 10:737–742CrossRef Liu K, Jin C, Hong X, Kim J, Zettl A, Wang E, Wang F (2014) Van der waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat Phys 10:737–742CrossRef
Zurück zum Zitat Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16,011–16,021CrossRef Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16,011–16,021CrossRef
Zurück zum Zitat Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631CrossRef Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631CrossRef
Zurück zum Zitat Mishra BK, Ashok B (2018) Coaxial carbon nanotubes: from springs to ratchet wheels and nanobearings. Mater Res Express 5:075,023–1–075,023–12CrossRef Mishra BK, Ashok B (2018) Coaxial carbon nanotubes: from springs to ratchet wheels and nanobearings. Mater Res Express 5:075,023–1–075,023–12CrossRef
Zurück zum Zitat Moore KE, Tune DD, Flavel BS (2015) Double-walled carbon nanotube processing. Adv Mat 27:3105–3137CrossRef Moore KE, Tune DD, Flavel BS (2015) Double-walled carbon nanotube processing. Adv Mat 27:3105–3137CrossRef
Zurück zum Zitat Moradian R (2004) Disordered carbon nanotube alloys in the effective-medium supercell approximation. Phys Rev B 70:205,425CrossRef Moradian R (2004) Disordered carbon nanotube alloys in the effective-medium supercell approximation. Phys Rev B 70:205,425CrossRef
Zurück zum Zitat Moradian R, Azadi S (2006) Boron and nitrogen-doped single-walled carbon nanotube. Phys E 35:157–160CrossRef Moradian R, Azadi S (2006) Boron and nitrogen-doped single-walled carbon nanotube. Phys E 35:157–160CrossRef
Zurück zum Zitat Moradian R, Fathalian A (2006) Ferromagnetic semiconductor single-wall carbon nanotubes. Nanotechnology 17:1835CrossRef Moradian R, Fathalian A (2006) Ferromagnetic semiconductor single-wall carbon nanotubes. Nanotechnology 17:1835CrossRef
Zurück zum Zitat Moradian R, Azadi S, Refii-Taber J (2007) When double-wall carbon nanotubes can become metallic or semiconducting. J Phys Cond Mat 19:176,209CrossRef Moradian R, Azadi S, Refii-Taber J (2007) When double-wall carbon nanotubes can become metallic or semiconducting. J Phys Cond Mat 19:176,209CrossRef
Zurück zum Zitat Patel AM, Joshi AY (2015) Detection of biological objects using dynamic characteristics of double-walled carbon nanotubes. Appl Nano 5:681–695CrossRef Patel AM, Joshi AY (2015) Detection of biological objects using dynamic characteristics of double-walled carbon nanotubes. Appl Nano 5:681–695CrossRef
Zurück zum Zitat Pederson MR, Broughton JO (1992) Nanocapillarity in fullerene tubules. Phys Rev Lett 69:2689CrossRef Pederson MR, Broughton JO (1992) Nanocapillarity in fullerene tubules. Phys Rev Lett 69:2689CrossRef
Zurück zum Zitat Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science 293:76CrossRef Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science 293:76CrossRef
Zurück zum Zitat Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12,592CrossRef Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12,592CrossRef
Zurück zum Zitat Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on c60. Phys Rev B 46:1804CrossRef Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on c60. Phys Rev B 46:1804CrossRef
Zurück zum Zitat Sautet P, Joachim C (1988) Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys Rev B 38:12,238–12,247CrossRef Sautet P, Joachim C (1988) Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys Rev B 38:12,238–12,247CrossRef
Zurück zum Zitat Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H (2004a) Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett 84:2412 Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H (2004a) Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett 84:2412
Zurück zum Zitat Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H (2004b) Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett 84:2412–2414 Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H (2004b) Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett 84:2412–2414
Zurück zum Zitat Srivastava S, Kino H, Joachim C (2016) Contact conductance of a graphene nanoribbons with its graphene nano-electrodes. Nanoscale 8:9265–9271CrossRef Srivastava S, Kino H, Joachim C (2016) Contact conductance of a graphene nanoribbons with its graphene nano-electrodes. Nanoscale 8:9265–9271CrossRef
Zurück zum Zitat Stone AD, Szafer A (1988) What is measured when you measure a resistance?—the landauer formula revisited. IBM J Res Dev 32:384–413CrossRef Stone AD, Szafer A (1988) What is measured when you measure a resistance?—the landauer formula revisited. IBM J Res Dev 32:384–413CrossRef
Zurück zum Zitat Su WS, Leung TC, Chan CT (2007) Work function of single-walled and multiwalled carbon nanotubes: first-principles study. Phys Rev B 76:235,413–1–235,413–8CrossRef Su WS, Leung TC, Chan CT (2007) Work function of single-walled and multiwalled carbon nanotubes: first-principles study. Phys Rev B 76:235,413–1–235,413–8CrossRef
Zurück zum Zitat Tison Y, Giusca CE, Stolojan V, Hayashi Y, Silva SRP (2008) The inner shell influence on the electronic structure of double-walled carbon nanotubes. Adv Mater 20:189–194CrossRef Tison Y, Giusca CE, Stolojan V, Hayashi Y, Silva SRP (2008) The inner shell influence on the electronic structure of double-walled carbon nanotubes. Adv Mater 20:189–194CrossRef
Zurück zum Zitat Tsang SC, Harris PJF, Green MLH (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362:520–522CrossRef Tsang SC, Harris PJF, Green MLH (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362:520–522CrossRef
Zurück zum Zitat Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7CrossRef Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7CrossRef
Zurück zum Zitat Wei J, Zhu H, Jiang B, Ci L, Wu D (2003) Electronic properties of double-walled carbon nanotube films. Carbon 41:2495CrossRef Wei J, Zhu H, Jiang B, Ci L, Wu D (2003) Electronic properties of double-walled carbon nanotube films. Carbon 41:2495CrossRef
Zurück zum Zitat White C, Todorov T (1998) Carbon nanotubes as long ballistic conductors. Nature 393:240CrossRef White C, Todorov T (1998) Carbon nanotubes as long ballistic conductors. Nature 393:240CrossRef
Zurück zum Zitat Wolfsberg M, Helmholz LJ (1952) The spectra and electronic structure of the tetrahedral ions mno\(_{4}^{-}\), cro\(_{4}^{--}\), and clo\(_{4}^{-}\). J Chem Phys 20:837–843CrossRef Wolfsberg M, Helmholz LJ (1952) The spectra and electronic structure of the tetrahedral ions mno\(_{4}^{-}\), cro\(_{4}^{--}\), and clo\(_{4}^{-}\). J Chem Phys 20:837–843CrossRef
Zurück zum Zitat Yamada Y, Kimizuka O, Tanaike O, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yamada Y, Hatori H (2009) Capacitor properties and pore structure of single- and double-walled carbon nanotubes. Electrochem Solid-State Lett 12:K14–K16CrossRef Yamada Y, Kimizuka O, Tanaike O, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yamada Y, Hatori H (2009) Capacitor properties and pore structure of single- and double-walled carbon nanotubes. Electrochem Solid-State Lett 12:K14–K16CrossRef
Zurück zum Zitat Yong KS, Otalvaro DM, Duchemin I, Saeys M, Joachim C (2008) Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Phys Rev B 77:205,429–1–205,429–9CrossRef Yong KS, Otalvaro DM, Duchemin I, Saeys M, Joachim C (2008) Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Phys Rev B 77:205,429–1–205,429–9CrossRef
Zurück zum Zitat Zhang Y, Zhou L, Zhao S, Wang W, Wang E, Liang W (2014) Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors. J Appl Phys 115:224,503CrossRef Zhang Y, Zhou L, Zhao S, Wang W, Wang E, Liang W (2014) Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors. J Appl Phys 115:224,503CrossRef
Metadaten
Titel
Electron transport through double-walled carbon nanotube quantum dots
verfasst von
Saurabh Srivastava
Brijesh Kumar Mishra
Publikationsdatum
01.11.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 11/2018
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-018-4398-9

Weitere Artikel der Ausgabe 11/2018

Journal of Nanoparticle Research 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.