Skip to main content

Advertisement

Log in

Graphical Planning Envelopes for Estimating the Surface Footprint of CO2 Plumes during CO2 Injection into Saline Aquifers

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This article presents research regarding the storage or sequestration of carbon dioxide in deep, saline aquifers. Building upon existing research and supplementing it with new numerical modeling simulations, a set of graphical planning curves was developed. Each graphical planning curve plots the value of Ω or the normalized surface footprint per kilogram of CO2 injected versus the aquifer anisotropy ratio. The planning curves present one planning envelope that is subdivided into two parts. One portion of the envelope governs the planning for active injection operations of geologic storage projects typically lasting less than 100 years. The second portion of the envelope governs the planning for long-term monitoring of the carbon dioxide plume as it evolves from mostly free-phase or highly concentrated aqueous-phase carbon dioxide to entirely dilute aqueous-phase carbon dioxide. This approach is innovative and useful for practitioners since it provides a simple way to estimate the CO2 surface footprint regardless of the aquifer anisotropy. Previous approaches for estimating the footprint usually assumed an isotropic and homogeneous aquifer storage zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bachu, S., & Adams, J. J. (2003). Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 44, 3151–3175. doi:10.1016/S0196-8904(03)00101-8.

    Article  CAS  Google Scholar 

  • Bachu, S., Gunter, W. D., & Perkins, E. H. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.

    Article  CAS  Google Scholar 

  • Bayer, M. R., & Kobelski, B. (2008). Underground Injection Control Program: Proposed regulations for underground injection of carbon dioxide for geologic sequestration. Ground Water Monitoring & Remediation, 28(4), 42–44. Academic OneFile. Web. 17 Apr. 2010. doi:10.1111/j.1745-592.2008.00219.x.

  • Bradshaw, J., Bachu, S., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N. P., et al. (2007). CO2 storage capacity estimation: Issues and development of standards. International Journal of Greenhouse Gas Control, 1, 62–68. doi:10.1016/S1750-5836(07)00027-8.

    Article  CAS  Google Scholar 

  • Brennan, S. T., & Burruss, R. C. (2006). Specific storage volumes: A useful tool for CO2 storage capacity assessment. Natural Resources Research, 15(3), 165–182. doi:10.1007/s11053-006-9019-0.

    Article  CAS  Google Scholar 

  • Celia, M. A., & Nordbotten, J. M. (2011). How simple can we make models for CO2 injection, migration, and leakage? Energy Procedia, 4, 3857–3864. doi:10.1016/j.egypro.2011.02.322.

    Article  Google Scholar 

  • Chadwick, R. A., Zweigel, P., Gregerson, U., Kirby, G. A., Holloway, S., & Johannesson, P. N. (2004). Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy, 29, 1371–1381.

    Article  CAS  Google Scholar 

  • Chang, Y. (1990). Development of a three-dimensional, equation of state compositional reservoir simulator for miscible gas flooding. Ph.D. dissertation, The University of Texas, Austin.

  • Corey, A. T. (1954). The interrelation between gas and oil relative permeabilities. Producers Monthly, November, 38–41.

  • CRC Press. (1984). Handbook of chemistry and physics (65th ed.). Boca Raton, FL: CRC Press.

  • Doughty, C., & Benson, S. (2006). Strategies for optimization of pore volume utilization for CO2 storage. In Proceedings for the 5th national conference on carbon sequestration, May 8–10, 2006. Pittsburg, PA: National Energy Technology Laboratory, United States Department of Energy.

  • Doughty, C., & Pruess, K. (2004). Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone Journal, 3, 837–847.

    Article  CAS  Google Scholar 

  • Ennis-King, J., Bradshaw, J., Gibson-Poole, C., Hennig, A., Lang, S., Paterson, L., et al. (2005). Long-term numerical simulation of a portfolio of possible sites for geological storage of carbon dioxide in Australia. In E. S. Rubin, D. W. Keith, & C. F. Gilboy (Eds.), Proceedings of the 7th international conference on greenhouse gas control technologies (Vol. I, pp. 711–719). Elsevier. doi:10.1016/B978-008044704-9/50072-0.

  • Ennis-King, J. P., & Paterson, L. (2003). Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. Presented at Society of Petroleum Engineers Annual Technical Conference and Exhibition, Denver, Colorado, 5–8 October 2003, SPE Paper No. 84344.

  • Essandoh-Yeddu, J., & Gulen, G. (2009). Economic modeling of carbon dioxide integrated pipeline network for enhanced oil recovery and geologic sequestration in the Texas Gulf Coast region. In 9th international conference on greenhouse gas control technologies, GHGT-9 (Vol. 1, pp. 1603–1610), November 16–20, 2008. Washington DC: Elsevier. doi:10.1016/j.egypro.2009.01.210.

  • Finnemore, E. J., & Franzini, J. B. (2002). Fluid mechanics with engineering applications, Table A.1 (10th ed.). New York, NY: McGraw-Hill.

  • Flett, M. A., Gurton, R. M., & Taggart, I. J. (2005). Heterogeneous saline formations: Long-term benefits for geo-sequestration of greenhouse gases. In E. S. Rubin, D. W. Keith, C. F. Gilboy, T. Morris, & K. Thambimuthu (Eds.), Proceedings of the 7th international conference on greenhouse gas control technologies (Vol. I, pp. 501–509). Elsevier.

  • Flett, M., Gurton, R., & Weir, G. (2007). Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping. Journal of Petroleum Science and Engineering, 57, 106–118. doi:10.1016/j.petrol.2006.08.016.

    Article  CAS  Google Scholar 

  • Gasda, S. E., Nordbotten, J. M., & Celia, M. A. (2011). The impact of local-scale processes on large-scale CO2 migration and immobilization. Energy Procedia, 4, 3896–3903. doi:10.1016/j.egypro.2011.02.327.

    Article  CAS  Google Scholar 

  • Green, C., Ennis-King, J., & Pruess, K. (2009). Effect of vertical heterogeneity on long-term migration of CO2 in saline formations. Energy Procedia, 1(1), 1823–1830. doi:10.1016/j.egypro.2009.01.238.

    Article  CAS  Google Scholar 

  • Han, W. S., & McPherson, B. J. (2009). Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs. Energy Conversion and Management, 50(10), 2570–2583. Academic OneFile. Web. 17 Apr. 2010. http://dx.doi.org.dax.lib.unf.edu/10.1016/j.enconman.2009.06.008.

  • Herzog, H. (2009). Carbon dioxide capture and storage. In D. Helm & C. Hepburn (Eds.), Economics and politics of climate change (Chap. 13, pp. 263–283). Oxford: Oxford University Press.

  • Intergovernmental Panel on Climate Change (IPCC). (2005). In B. Metz, O. Davidson, H. C. de Coninck, M. Loos, & L. A. Meyer (Eds.), Special report on carbon dioxide capture and storage (Chap. 5, pp. 195–276). Cambridge University Press, Cambridge.

  • Jikich, S. A., Sams, W. N., Bromhal, G., Pope, G., Gupta, N., & Smith, D. H. (2003). Carbon dioxide injectivity in brine reservoirs using horizontal wells. In Proceedings for the 2nd national conference on carbon sequestration, May 5–8, 2003. Pittsburg, PA: National Energy Technology Laboratory, United States Department of Energy.

  • Koide, H. G., Tazaki, Y., Noguchi, Y., Nakayama, S., Iijima, M., & Ito, K. (1992). Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Conversion and Management, 33(5–8), 619–626.

    Article  CAS  Google Scholar 

  • Lewicki, J. L., Birkholzer, J., & Tsang, C. (2007). Natural and industrial analogues for leakage of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned. Environmental Geology, 52, 457–467. doi:10.1007/s00254-006-0479-7.

    Article  ADS  CAS  Google Scholar 

  • Liu, F., Lu, P., Zhu, C., & Xiao, Y. (2011). Coupled reactive flow and transport modeling of CO2 sequestration in the mt. simon sandstone formation, midwest USA. International Journal of Greenhouse Gas Control, 5(2), 294–307. doi:10.1016/j.ijggc.2010.08.008.

    Article  CAS  Google Scholar 

  • MIT. (2007). The future of coal: Options for a carbon constrained world. Massachusetts Institute of Technology. Available at http://mit.edu/coal/.

  • MIT. (2010). Carbon dioxide thermophysical property calculator. Available at http://sequestration.mit.edu/tools/index.html.

  • Nogues, J. P., Nordbotten, J. M., & Celia, M. A. (2011). Detecting leakage of brine or CO2 through abandoned wells in a geological sequestration operation using pressure monitoring wells. In 10th international conference on greenhouse gas control technologies (Vol. 4, pp. 3620–3627), September 19–23, 2010. Amsterdam: Elsevier Ltd. doi:10.1016/j.egypro.2011.02.292.

  • Nordbotten, J., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58, 339–360. doi:10.1007/s11242-004-0670-9.

    Article  CAS  Google Scholar 

  • Obdam, A., van der Meer, L. G. H., May, F., Kervevan, C., Bech, N., & Wildenborg, A. (2003). Effective CO2 storage capacity in aquifers, gas fields, oil fields and coal fields. In J. Gale & Y. Kaya (eds.), Proceedings of the 6th international conference on greenhouse gas control technologies (GHGT-6) (Vol. I, pp. 339–344), October 1–4, 2002, Kyoto, Japan. Pergamon.

  • Okwen, R. T., Stewart, M. T., & Cunningham, J. (2010). Analytical solution for estimating storage efficiency of geologic sequestration of CO2. International Journal of Greenhouse Gas Control, 4, 102–107. doi:10.1016/j.ijggc.2009.11.002.

    Article  CAS  Google Scholar 

  • Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2 user’s guide. Version 2.0. Rep. LBNL-43134. Berkeley, CA: Lawrence Berkeley National Laboratory.

  • Rutqvist, J., & Tsang, C. F. (2002). A study of caprock hydromechanical changes associated with CO2 injection into a brine formation. Environmental Geology, 42, 296–305.

    Article  Google Scholar 

  • Sharqawy, M. H., Lienhard, J. H., & Zubair, S. M. (2010). Thermophysical properties of seawater: A review of existing correlations and data. Desalination and Water Treatment, 16, 354–380. doi:10.5004/dwt.2010.1079.

    Article  CAS  Google Scholar 

  • Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25(6), 1509–1596.

    Article  ADS  CAS  Google Scholar 

  • United States Department of Energy (DOE). (2008a). Methodology for development of geologic storage estimates for carbon dioxide. Appendix B in Carbon Sequestration Atlas II of the United States and Canada (pp. 115–132). Pittsburgh, PA: National Energy Technology Laboratory.

  • United States Department of Energy (DOE). (2008b). Carbon Sequestration Atlas II of the United States and Canada, Southeast Regional Carbon Sequestration Partnership. Pittsburg, PA: National Energy Technology Laboratory.

  • University of Texas. (2000). UTCHEM version 9.0, a three-dimensional chemical flood simulator, two volumes, Vol. 2—Technical documentation. Austin, TX: Reservoir Engineering Research Program, Center for Petroleum and Geosystems Engineering, The University of Texas at Austin.

  • Van der Meer, L. G. H. (1995). The CO2 storage efficiency of aquifers. Energy Conversion and Management, 36(6–9), 513–518.

    Article  Google Scholar 

  • Van der Meer, L. G. H. (1996). Computer modeling of underground CO2 storage. Energy Conversion and Management, 37(6–8), 1155–1160.

    Article  Google Scholar 

  • Xie, X., & Economides, M. J. (2009). The impact of carbon geological sequestration. Journal of Natural Gas Science and Engineering, 1(3), 103–111. doi:10.1016/j.jngse.2009.06.002.

    Article  Google Scholar 

  • Yamamoto, H., & Doughty, C. (2011). Investigation of gridding effects for numerical simulations of CO2 geologic sequestration. International Journal of Greenhouse Gas Control. doi:10.1016/j.ijggc.2011.02.007.

  • Yamamoto, H., Zhang, K., Karasaki, K., Marui, A., Uehara, H., & Nishikawa, N. (2009). Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. International Journal of Greenhouse Gas Control, 3(5), 586–599. doi:10.1016/j.ijggc.2009.04.007.

    Article  CAS  Google Scholar 

  • Zhou, Q., Birkholzer, J. T., Tsang, C. F., & Rutqvist, J. (2007). A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. International Journal of Greenhouse Gas Control, 2, 626–639. doi:10.1016/j.ijggc.2008.02.004.

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the journal editor and two anonymous reviewers for their suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C.J. Graphical Planning Envelopes for Estimating the Surface Footprint of CO2 Plumes during CO2 Injection into Saline Aquifers. Nat Resour Res 20, 263–277 (2011). https://doi.org/10.1007/s11053-011-9155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-011-9155-z

Keywords

Navigation