Skip to main content
Log in

Unresolved Complexity in Assessments of Mineral Resource Depletion and Availability

  • Review Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Considerations of mineral resource availability and depletion form part of a diverse array of sustainable development-oriented studies, across domains such as resource criticality, life cycle assessment and material flow analysis. Given the multidisciplinary nature of these studies, it is important that a common understanding of the complexity and nuances of mineral supply chains be developed. In this paper, we provide a brief overview of these assessment approaches and expand on several areas that are conceptually difficult to account for in these studies. These include the dynamic nature of relationships between reserves, resources, cut-off grades and ore grades; the ability to account for local economic, social and environmental factors when performing global assessments; and the role that technology improvements play in increasing the availability of economically extractable mineral resources. Advancing knowledge in these areas may further enhance the sophistication and interpretation of studies that assess mineral resource depletion or availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Agricola, G. (1556). De Re Metallica (H. C. Hoover & L. H. Hoover, Trans.). North Chelmsford: Courier Corporation (1950).

  • Ali, S. H., Giurco, D., Arndt, N., Nickless, E., Brown, G., Demetriades, A., et al. (2017). Mineral supply for sustainable development requires resource governance. Nature, 543, 367–372.

    Article  Google Scholar 

  • Armitage, A., Desautels, P., Zurowski, G., Pennstrom, W., Malbran, F., & Fitch, R. (2011). Preliminary Economic Assessment Update—Technical Report for the Malku Khota Project, Department of Potosi, Bolivia. Prepared for South American Silver Corp.

  • Arndt, N. T., Hedenquist, J. W., Kesler, S. E., Thompson, J. F. H., Arndt, N. T., & Wood, D. G. (2017). Future global mineral resources. Geochemical Perspectives. doi:10.7185/geochempersp.6.1.

    Google Scholar 

  • Azimi, Y., Osanloo, M., & Esfahanipour, A. (2013). An uncertainty based multi-criteria ranking system for open pit mining cut-off grade strategy selection. Resources Policy, 38, 212–223.

    Article  Google Scholar 

  • Ballantyne, G. R., & Powell, M. S. (2014). Benchmarking comminution energy consumption for the processing of copper and gold ores. Minerals Engineering, 65, 109–114.

    Article  Google Scholar 

  • Bao, C., Mortazavi-Naeini, M., Northey, S., Tarnopolskaya, T., Monch, A., & Zhu, Z. (2013). Valuing flexible operating strategies in nickel production under uncertainty. In Proceedings 20th international congress on modelling and simulation, Adelaide, Australia, 1-6 December 2013, pp. 1426–1432.

  • Bartos, P. J. (2007). Is mining a high-tech industry? Investigations into innovation and productivity advance. Resources Policy, 32(4), 149–158.

    Article  Google Scholar 

  • Biedermann, R. P. (2014). China’s rare earth sector—between domestic consolidation and global hegemony. International Journal of Emerging Markets, 9(2), 276–293.

    Article  Google Scholar 

  • Bösch, M. E., Hellweg, S., Huijbregts, M. A. J., & Frischknecth, R. (2007). Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. International Journal of Life Cycle Assessment, 12(3), 181–190.

    Article  Google Scholar 

  • CEEC (2017). Energy Curve Program. Coalition for Eco-Efficient Comminution (CEEC). https://www.ceecthefuture.org/energy-curve-program/. Accessed 22 May 2017.

  • Ciacci, L., Nuss, P., Reck, B., Werner, T., & Graedel, T. (2016). Metal criticality determination for Australia, the US, and the Planet—Comparing 2008 and 2012 Results. Resources, 5(4), 29.

    Article  Google Scholar 

  • Clift, R., & Druckman, A. (Eds.). (2016). Taking stock of industrial ecology. Dordrecth: Springer.

    Google Scholar 

  • Comisión Chilena del Cobre (2014). Análisis de Variables Clav es para la Sustentabilidad de la Minería en Chile, Cochilco, Government of Chile, Santiago. (in Spanish).

  • Crowson, P. (2003). Mine size and the structure of costs. Resources Policy, 29, 15–36.

    Article  Google Scholar 

  • Crowson, P. C. F. (2011). Mineral reserves and future minerals availability. Mineral Economics, 24, 1–6.

    Article  Google Scholar 

  • Crowson, P. (2012). Some observations on copper yields and ore grades. Resources Policy, 37, 59–72.

    Article  Google Scholar 

  • Dewulf, J., Benini, L., Mancini, L., Sala, S., Blengini, G. A., Ardente, F., et al. (2015). Rethinking the area of protection “Natural Resources” in life cycle assessment. Environmental Science and Technology, 49, 5310–5317.

    Article  Google Scholar 

  • Dimitrakopoulos, R. G., & Sabour, S. A. A. (2007). Evaluating mine plans under uncertainty: Can the real options make a difference? Resources Policy, 32, 116–125.

    Article  Google Scholar 

  • Drielsma, J. A., Russell-Vaccari, A. J., Drnek, T., Brady, T., Weihed, P., Mistry, M., et al. (2016). Mineral resources in life cycle impact assessment—defining the path forward. International Journal of Life Cycle Assessment, 21, 85–105.

    Article  Google Scholar 

  • Elshkaki, A., & Graedel, T. E. (2013). Dynamic analysis of the global metals flows and stocks in electricity generation technologies. Journal of Cleaner Production, 59, 260–273.

    Article  Google Scholar 

  • Elshkaki, A., Graedel, T. E., Ciacci, L., & Reck, B. (2016). Copper demand, supply, and associated energy use to 2050. Global Environmental Change, 39, 305–315.

    Article  Google Scholar 

  • EU Commission (2014). Report on Critical Raw Materials for the EU, Report of the Ad hoc Working Group on Defining Critical Raw Materials, May 2014. http://ec.europa.eu/DocsRoom/documents/10010/attachments/1/translations/en/renditions/pdf.

  • Frenzel, M., Kullik, J., Reuter, M. A., & Gutzmer, J. (2017). Raw material ‘criticality’—sense or nonsense? Journal of Physics D: Applied Physics, 50(12), 18.

    Article  Google Scholar 

  • Gemechu, E. D., Helbig, C., Sonnemann, G., Thorenz, A., & Tuma, A. (2015). Import-based Indicator for the geopolitical supply risk of raw materials in life cycle sustainability assessments. Journal of Industrial Ecology, 201(1), 154–165.

    Google Scholar 

  • Gerst, M. D. (2008). Revisiting the cumulative grade-tonnage relationship for major copper ore types. Economic Geology, 103, 615–628.

    Article  Google Scholar 

  • Giurco, D., & Cooper, C. (2012). Mining and sustainability: asking the right questions. Minerals Engineering, 29, 3–12.

    Article  Google Scholar 

  • Giurco, D., Mohr, S., Mudd, G., Mason, L., & Prior, T. (2012a). Resource criticality and commodity production projections. Resources, 1, 23–33.

    Article  Google Scholar 

  • Giurco, D., Prior, T., Mason, L., Mohr, S., & Mudd, G. (2012b). Life-of-resource sustainability considerations for mining. Australian Journal of Civil Engineering, 10(1), 47–56.

    Article  Google Scholar 

  • Goonan, T.G. (2004). Flows of selected materials associated with world copper smelting. U.S. Geological Survey, Open-file report 2004-1395.

  • Gordon, R. B., Bertram, M., & Graedel, T. E. (2006). Metal stocks and sustainability. Proceedings of the National Academy of Sciences (PNAS), 103(5), 1209–1214.

    Article  Google Scholar 

  • Graedel, T. E. (2017). Grand challenges in metal life cycles. Natural Resources Research. doi:10.1007/s11053-017-9333-8.

    Google Scholar 

  • Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., et al. (2012). Methodology of metal criticality determination. Environmental Science and Technology, 46, 1063–1070.

    Article  Google Scholar 

  • Graedel, T. E., Harper, E. M., Nassar, N. T., & Reck, B. K. (2015). On the materials basis of modern society. Proceedings of the National Academy of Sciences, 112, 6295–6300.

    Article  Google Scholar 

  • Graedel, T. E., & Reck, B. K. (2015). Six years of criticality assessments. What have we learned so far? Journal of Industrial Ecology, 20(4), 692–699.

    Article  Google Scholar 

  • Gunson, A.J. (2013). Quantifying, reducing and improving mine water use. PhD Thesis, The University of British Columbia.

  • Harmsen, J. H. M., Roes, A. L., & Patel, M. K. (2013). The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy, 50, 62–73.

    Article  Google Scholar 

  • Harper, E. M., Kavlak, G., Burmeister, L., Eckelman, M. J., Erbis, S., Espinooza, V. S., et al. (2015). Criticality of the geological zinc, tin, and lead family. Journal of Industrial Ecology, 19(4), 628–644.

    Article  Google Scholar 

  • Holley, E. A., & Mitcham, C. (2016). The pebble mine dialogue: A case study in public engagement and the social license to operate. Resources Policy, 47, 18–27.

    Article  Google Scholar 

  • Jones, R. T. (2004). JOM world nonferrous smelter survey. Part II: Platinum group metals. JOM Journal of the Minerals Metals and Materials Society, 56(12), 59–63.

    Article  Google Scholar 

  • Jowitt, S. M., Mudd, G. M., & Weng, Z. (2013). Hidden mineral deposits in Cu-dominated porphyry-skarn systems: How resource reporting can occlude important mineralization types within mining camps. Economic Geology, 108, 1185–1193.

    Article  Google Scholar 

  • Kapusta, J. P. T. (2004). JOM world nonferrous smelters survey, part I: Copper. JOM Journal of the Minerals Metals and Materials Society, 56(7), 21–27.

    Article  Google Scholar 

  • Kerr, R. (2014). The coming copper peak. Science, 343, 722–724.

    Article  Google Scholar 

  • Klinglmair, M., Sala, S., & Brandão, M. (2014). Assessing resource depletion in LCA: A review of methods and methodological issues. International Journal of Life Cycle Assessment, 19(3), 580–592.

    Article  Google Scholar 

  • Koppelaar, R. H. E. M., & Koppelaar, H. (2016). The ore grade and depth influence on copper energy inputs. Biophysical Economics and Resource Quality. doi:10.1007/s41247-016-0012-x.

    Google Scholar 

  • Koslov, M. S. (2015). Formation conditions of the Rudny Altai metallogenic province. Geology of Ore Deposits, 57(4), 266–291.

    Article  Google Scholar 

  • La Brooy, S. R., Linge, H. G., & Walker, G. S. (1994). Review of gold extraction from ores. Minerals Engineering, 7(10), 1213–1241.

    Article  Google Scholar 

  • Lèbre, E., Corder, G., & Golev, A. (2017). The role of the mining industry in a circular economy, a framework for resource management at the mine site level. Journal of Industrial Ecology, 21(3), 662–672.

    Article  Google Scholar 

  • Marsden, J. O. (2006). Overview of gold processing techniques around the world. Minerals & Metallurgical Processing, 23(3), 121–125.

    Google Scholar 

  • Mason, L., Prior, T., Mudd, G., & Giurco, D. (2011). Availability, addiction and alternatives: Three criteria for assessing the impact of peak minerals on society. Journal of Cleaner Production, 19, 958–966.

    Article  Google Scholar 

  • May, D., Prior, T., Cordell, D., & Giurco, D. (2012). Peak minerals: Theoretical foundations and practical application. Natural Resources Research, 21(1), 43–60.

    Article  Google Scholar 

  • Meinert, L. D., Robinson G. R. Jr., & Nassar, D. T. (2016). Mineral resources: Reserves, peak production and the future. Resources, 5, 14. doi:10.3390/resources5010014.

    Article  Google Scholar 

  • Mohr, S.H. (2010). Projection of world fossil fuel production with supply and demand interactions. PhD Thesis, The University of Newcastle.

  • Mohr, S., Giurco, D., Yelishetty, M., Ward, J., & Mudd, G. (2015). Projections of iron ore production. Natural Resources Research, 24(3), 317–327.

    Article  Google Scholar 

  • Mohr, S. H., Mudd, G. M., & Giurco, D. (2012). Lithium resources and production: Critical assessment and global projections. Minerals, 2, 65–84.

    Article  Google Scholar 

  • Mosier, D.L., Berger, V.I., & Singer, D.A. (2009). Volcanogenic Massive Sulfide Deposits of the World: Database and Grade and Tonnage Models, U.S. Geological Survey, Reston, Virginia, USA, Open File Report 2009-1034.

  • Mudd, G. M. (2010). The environmental sustainability of mining in Australia: Key mega-trends and looming constraints. Resources Policy, 35, 98–115.

    Article  Google Scholar 

  • Mudd, G. M., & Jowitt, S. M. (2014). A detailed assessment of global nickel resource trends and endowments. Economic Geology, 109, 1813–1841.

    Article  Google Scholar 

  • Mudd, G. M., Jowitt, S. M., & Werner, T. T. (2017). The world’s lead-zinc mineral resources: Scarcity, data, issues and opportunities. Ore Geology Reviews, 80, 1160–1190.

    Article  Google Scholar 

  • Mudd, G. M., & Mohr, S. (2010). Mineral Resources and Production in the Goldfields-Esperance Region: Projecting Future Scenarios. Monash University. Prepared for the Goldfields Esperance Development Commission. http://www.gedc.wa.gov.au/getattachment/News-and-publications/Publications/Mineral-Resourcesand-Production_Goldfields-Esperance-Dec-2010.pdf.aspx.

  • Mudd, G. M., Weng, Z., & Jowitt, S. M. (2013a). A detailed assessment of global Cu resource trends and endowments. Economic Geology, 108, 1163–1183.

    Article  Google Scholar 

  • Mudd, G. M., Weng, Z., Jowitt, S. M., Turnbull, I. D., & Graedel, T. E. (2013b). Quantifying the recoverable resources of by-product metals: The case of cobalt. Ore Geology Reviews, 55, 87–98.

    Article  Google Scholar 

  • Müller, E., Hilty, L. M., Widmer, R., Schluep, M., & Faulstich, M. (2014). Modeling metal stocks and flows: A review of dynamic material flow analysis methods. Environmental Science and Technology, 48(4), 2102–2113.

    Article  Google Scholar 

  • Nassar, N. T., Barr, R., Browning, M., Diao, Z., Friedlander, E., Harper, E. M., et al. (2012). Criticality of the geological copper family. Environmental Science and Technology, 46, 1071–1078.

    Article  Google Scholar 

  • Nassar, N. T., Du, X., & Graedel, T. E. (2015a). Criticality of the rare earth elements. Journal of Industrial Ecology, 19(6), 1044–1054.

    Article  Google Scholar 

  • Nassar, N. T., Graedel, T. E., & Harper, E. M. (2015b). By-product metals are technologically essential but have problematic supply. Science Advances, 1(3), e1400180. doi:10.1126/sciadv.1400180.

    Article  Google Scholar 

  • Nickless, E. (2017). Resourcing future generations: A contribution by the Earth Science Community. Natural Resources Research. doi:10.1007/s11053-017-9331-x.

    Google Scholar 

  • Norgate, T., & Jahanshahi, S. (2010). Low grade ores—smelt, leach or concentrate? Minerals Engineering, 23, 65–73.

    Article  Google Scholar 

  • Northey, S. A., Haque, N., Lovel, R., & Cooksey, M. A. (2014a). Evaluating the application of water footprint methods to primary metal production systems. Minerals Engineering, 26, 65–80.

    Article  Google Scholar 

  • Northey, S., Haque, N., & Mudd, G. (2013). Using sustainability reporting to assess the environmental footprint of copper mining. Journal of Cleaner Production, 40, 118–128.

    Article  Google Scholar 

  • Northey, S. A., Mohr, S., Mudd, G. M., Weng, Z., & Giurco, D. (2014b). Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources, Conservation and Recycling, 83, 190–201.

    Article  Google Scholar 

  • Northey, S. A., Mudd, G. M., Saarivuori, E., Wessman-Jääskeläinen, H., & Haque, N. (2016). Water footprinting and mining: Where are the limitations and opportunities? Journal of Cleaner Production, 135, 1098–1116.

    Article  Google Scholar 

  • Northey, S. A., Mudd, G. M., Werner, T. T., Jowitt, S. M., Haque, N., Yellishetty, M., et al. (2017). The exposure of global base metal resources to water criticality, scarcity and climate change. Global Environmental Change, 44, 109–124.

    Article  Google Scholar 

  • Nuss, P., Harper, E. M., Nassar, N. T., Reck, B. K., & Graedel, T. E. (2014). Criticality of iron and its principal alloying elements. Environmental Science and Technology, 48(7), 4171–4177.

    Article  Google Scholar 

  • Panousi, S., Harper, E. M., Nuss, P., Eckelman, M. J., Hakimian, A., & Graedel, T. E. (2016). Criticality of seven specialty metals. Journal of Industrial Ecology, 20(4), 837–853.

    Article  Google Scholar 

  • Prior, T., Giurco, D., Mudd, G., Mason, L., & Behrisch, J. (2012). Resource depletion, peak minerals and the implications for sustainable resource management. Global Environmental Change, 22(3), 577–587.

    Article  Google Scholar 

  • Radetzki, M. (2009). Seven thousand years in the service of humanity—the history of copper, the red metal. Resources Policy, 34, 176–184.

    Article  Google Scholar 

  • Ramachandran, V., Diaz, C., Eltringham, T., Jiang, C. Y., Lehner, T., Mackey, P. J., et al. (2003). Primary copper production - a survey of operating world copper smelters. In Copper 03-Cobre03 International conference, Vol. 4 Pyrometallurgy of Copper, Book 1: Smelting Operations, Ancillary Operations and Furnace Integrity, pp. 3–16.

  • Rankin, W.J. (2013). Australasian mining and metallurgical operating practices. The Sir Maurice Mawby Memorial Volume (3rd ed.). Australasian Institute of Mining and Metallurgy, Monograph 28.

  • Schneider, L., Berger, M., & Finkbeiner, M. (2011). The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterization to model the depletion of abiotic resources. International Journal of Life Cycle Assessment, 16, 929–936.

    Article  Google Scholar 

  • Schneider, L., Berger, M., Schüler-Hainsch, E., Knöfel, S., Ruhland, K., Mosig, J., et al. (2014). The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment. International Journal of Life Cycle Assessment, 119(3), 601–610.

    Article  Google Scholar 

  • Schodde, R. (2011). Recent trends in mineral exploration—are we finding enough? In: Proceedings of RMG 8th annual mining and exploration investment conference, Stockholm, Sweden, 15–16 November 2011.

  • Singer, D. A. (2017). Future copper resources. Ore Geology Reviews, 86, 271–279.

    Article  Google Scholar 

  • Singer, D.A., Berger, V.I., & Moring, B.C. (2008). Porphyry copper deposits of the world—database and grade and tonnage models. U.S. Geological Survey (USGS), Reston, Virginia, USA, Open-File Report 2008-1155.

  • Sonderegger, T., Dewulf, J., Fantke, P., de Souza, D. M., Pfister, S., Stoessel, F., et al. (2017). Towards harmonizing natural resources as an area of protection in life cycle impact assessment. International Journal of Life Cycle Assessment. doi:10.1007/s11367-017-1297-8.

    Google Scholar 

  • Sonderegger, T., Pfister, S., & Hellweg, S. (2015). Criticality of water: Aligning water and mineral resource assessment. Environmental Science and Technology, 49, 12315–12323.

    Article  Google Scholar 

  • Sprecher, B., Daigo, I., Murakami, S., Kleijn, R., Vos, M., & Kramer, G. J. (2015). Framework for resilience in material supply chains, with a case study from the 2010 Rare Earth Crisis. Environmental Science and Technology, 49(11), 6740–6750.

    Article  Google Scholar 

  • Steen, B. A. (2006). Abiotic resource depletion, different perceptions of the problem with mineral deposits. International Journal of Life Cycle Assessment, 11(1), 49–54.

    Article  Google Scholar 

  • Sverdrup, H. U., Ragnarsdottir, K. V., & Koca, D. (2014). On modelling the global copper mining rates, market supply, copper price and the end of copper reserves. Resources, Conservation and Recycling, 87, 158–174.

    Article  Google Scholar 

  • Swart, P., & Dewulf, J. (2013). Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data. Resources, Conservation and Recycling, 73, 180–187.

    Article  Google Scholar 

  • Tilton, J. E., & Lagos, G. (2007). Assessing the long-run availability of copper. Resources Policy, 32, 19–23.

    Article  Google Scholar 

  • Tukker, A. (2014). Rare earth elements supply restrictions: Market failures, not scarcity, hamper their current use in high-tech applications. Environmental Science and Technology, 48, 9973–9974.

    Article  Google Scholar 

  • Valero, A., & Valero, A. (2012). From grave to cradle. Journal of Industrial Ecology, 17(1), 43–52.

    Article  Google Scholar 

  • Van Oers, L., de Koning, A., Guinée, J.B., & Huppes, G. (2002). Abiotic resource depletion in LCA, Road and Hydraulic Engineering Institute, Ministry of Water and Transport, Amsterdam, 25 June 2002. http://media.leidenuniv.nl/legacy/report%20abiotic%20resource%20depletion.pdf.

  • Van Oers, L., & Guinée, J. (2016). The abiotic depletion potential: Background, updates, and future. Resources, 5(1), 16. doi:10.3390/resources5010016.

    Article  Google Scholar 

  • Vieira, M. D. M., Goedkoop, M. J., Storm, P., & Huijbregt, M. A. J. (2012). Ore grade decrease as life cycle impact indicator for metal scarcity: The case of copper. Environmental Science and Technology, 46, 12772–12778.

    Article  Google Scholar 

  • Warner, A. E. M., Díaz, C. M., Dalvi, A. D., Mackey, P. J., & Tarasov, A. V. (2006). JOM world nonferrous smelter survey. Part III: Nickel: Laterite. JOM Journal of the Minerals Metals and Materials Society, 58(4), 11–20.

    Article  Google Scholar 

  • Warner, A. E. M., Díaz, C. M., Dalvi, A. D., Mackey, P. J., Tarasov, A. V., & Jones, R. T. (2007). JOM world nonferrous smelter survey Part IV: Nickel: Sulfide. JOM Journal of the Minerals Metals and Materials Society, 59(4), 58–72.

    Article  Google Scholar 

  • Weng, Z., Jowitt, S. M., Mudd, G. M., & Haque, N. (2015). A detailed assessment of global rare earth resources: Opportunities and challenges. Economic Geology, 110, 1925–1952.

    Article  Google Scholar 

  • Werner, T. T., Mudd, G. M., & Jowitt, S. M. (2015). Indium: key issues in assessing mineral resources and long-term supply from recycling. Applied Earth Science (Transactions of the Institute of Minerals and Metallurgy B), 124, 213–226.

    Article  Google Scholar 

  • Werner, T. T., Mudd, G. M., & Jowitt, S. M. (2017). The world’s by-product and critical metal resources part III: A global assessment of indium. Ore Geology Reviews, 86, 939–956.

    Article  Google Scholar 

  • West, J. (2011). Decreasing metal ore grades, are they really being driven by the depletion of high-grade deposits? Journal of Industrial Ecology, 15(2), 165–168.

    Article  Google Scholar 

  • Woodcock, J. T. (1980). Mining and metallurgical practices in Australasia. The Australasian Institute of Mining and Metallurgy.

  • Woodcock, J. T., & Hamilton, J. K. (1993). Australasian mining and metallurgy, vol. 1 & 2. The Australian Institute of Mining and Metallurgy, Victoria.

  • Yaksic, A., & Tilton, J. E. (2009). Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy, 34, 185–194.

    Article  Google Scholar 

  • Yap, A., Saconi, F., Nehring, M., Arteaga, F., Pinto, P., Asad, M. W. A., et al. (2013). Exploiting metallurgical throughput-recovery relationship to optimise resource value as part of the production scheduling process. Minerals Engineering, 53, 74–83.

    Article  Google Scholar 

  • Yellishetty, M., Ranjith, P. G., Tharumarajah, A., & Bhosale, S. (2009). Life cycle assessment in the minerals and metals sector: A critical review of selected issues and challenges. International Journal of Life Cycle Assessment, 14, 257–267.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Resources Research editorial team and the anonymous reviewers who provided detailed feedback that has greatly improved the quality of the paper. Discussions over the years with Dr. Steve Mohr, Dr. Damien Giurco, Dr. Simon Jowitt, and Dr. Mohan Yellishetty have informed our perspectives and are gratefully appreciated. Financial support for this study was provided by CSIRO Mineral Resources, as well as the CSIRO “Wealth from Waste” cluster—a collaborative programme between the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO); the University of Queensland, the University of Technology, Sydney; Monash University, Swinburne University of Technology, and Yale University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Northey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northey, S.A., Mudd, G.M. & Werner, T.T. Unresolved Complexity in Assessments of Mineral Resource Depletion and Availability. Nat Resour Res 27, 241–255 (2018). https://doi.org/10.1007/s11053-017-9352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-017-9352-5

Keywords

Navigation