Skip to main content

Advertisement

Log in

Isolation Forest as an Alternative Data-Driven Mineral Prospectivity Mapping Method with a Higher Data-Processing Efficiency

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Mineral exploration targets can be delineated through multivariate analysis. These targets are usually recognized as anomalies in the procedure of data mining using a detection algorithm. In this paper, isolation forest, which is a data-mining algorithm for anomaly detection, was adapted to map gold prospectivity in the Laotudingzi–Xiaosiping district in Jilin Province, northeastern China. The performance of the isolation forest model was compared with those of restricted Boltzmann machine and logistic regression models for mapping gold prospectivity. The isolation forest model outperforms the restricted Boltzmann machine model but not the logistic regression model based on the receiver operating characteristic curve and area under the curve; however, the isolation forest model is much more efficient than the other two models in terms of data-processing efficiency. It takes 15.48, 254.74, and 57.33 s, respectively, to integrate the predictor map layers using the three models. Gold mineral exploration targets were optimally delineated by using the Youden index to maximize spatial association between delineated gold mineral exploration targets and the discovered gold deposits. Gold mineral exploration targets predicted by the three models occupy 10.97, 10.36, and 8.40% of the study area and contain 88, 81, and 81% of the discovered gold deposits. Therefore, the isolation forest algorithm is a potentially useful mineral prospectivity mapping method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

(Reproduced with permission from Chen and Wu 2017b)

Figure 3
Figure 4

(Reproduced with permission from Chen and Wu 2017b)

Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abedi, M., Gholami, A., & Norouzi, G. H. (2013). A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran. Computers and Geosciences, 52(1), 269–280.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012a). Support vector machine for multi-classification of mineral prospectivity areas. Computers and Geosciences, 46(2), 272–283.

    Article  Google Scholar 

  • Abedi, M., Torabi, S. A., Norouzi, G. H., & Hamzeh, M. (2012b). ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping. Journal of Applied Geophysics, 87(12), 9–18.

    Article  Google Scholar 

  • Abedi, M., Torabi, S. A., Norouzi, G. H., Hamzeh, M., & Elyasi, G. R. (2012c). PROMETHEE II: A knowledge-driven method for copper exploration. Computers and Geosciences, 46(2), 255–263.

    Article  Google Scholar 

  • Agterberg, F. P. (1974). Automatic contouring of geological maps to detect target areas for mineral exploration. Mathematical Geology, 6(4), 373–395.

    Article  Google Scholar 

  • Agterberg, F. P. (1989). LOGDIA-FORTRAN 77 program for logistic regression with diagnostics. Computers and Geosciences, 15(4), 599–614.

    Article  Google Scholar 

  • Agterberg, F.P. (1990). Combining indicator patterns for mineral resource evaluation. In China University of Geosciences (Eds.), proceedings of international workshop on statistical prediction of mineral resources (Vol. 1, pp. 1–15). Wuhan: International Association for Mathematical Geosciences.

  • Agterberg, F. P. (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources, 1(1), 39–50.

    Article  Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaal & D. F. Merriam (Eds.), Computer applications in resource estimation prediction and assessment for metals and petroleum (pp. 1–19). Oxford: Pergamon Press.

    Google Scholar 

  • An, P., Moon, W. M., & Rencz, A. N. (1991). Application of fuzzy theory for integration of geological, geophysical and remotely sensed data. Canadian Journal of Exploration Geophysics, 27(1), 1–11.

    Google Scholar 

  • Asadi, H. H., Sansoleimani, A., Fatehi, M., & Carranza, E. J. M. (2016). An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: A case study from Salafchegan area (Central Iran). Natural Resources Research, 25(4), 417–429.

    Article  Google Scholar 

  • Barnicoat, A. C. (2007). Mineral systems and exploration science: Linking fundamental controls on ore deposition with the exploration process. In C. J. Andrews (Ed.), Digging deeper. Proceedings of the ninth biennial SGA meeting (pp. 1407–1411). Dublin: Irish Association for Economic Geology.

  • Bergmann, R., Ludbrook, J., & Spooren, W. P. J. M. (2000). Different outcomes of the Wilcoxon–Mann–Whitney test from different statistics packages. The American Statistician, 54(1), 72–77.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1988). Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 54(11), 1585–1592.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Brown, W., Gedeon, T., & Groves, D. I. (2003a). Use of noise to augment training data: A neural network method of mineral–potential mapping in regions of limited known deposit examples. Natural Resources Research, 13(2), 141–152.

    Article  Google Scholar 

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47(4), 757–770.

    Article  Google Scholar 

  • Brown, W., Groves, D., & Gedeon, T. (2003b). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12(3), 183–200.

    Article  Google Scholar 

  • Carranza, E. J. M. (2009). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers and Geosciences, 35(10), 2032–2046.

    Article  Google Scholar 

  • Carranza, E. J. M. (2010). Improved wildcat modelling of mineral prospectivity. Resource Geology, 60(2), 129–149.

    Article  Google Scholar 

  • Carranza, E. J. M. (2015). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24(3), 291–304.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001a). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10(2), 125–136.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001b). Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Exploration and Mining Geology, 10(3), 165–175.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002a). Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines. Natural Resources Research, 11(1), 45–59.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002b). Wildcat mapping of gold potential, Baguio district, Philippines. Transactions of the Institutions of Mining and Metallurgy (Applied Earth Science), 111(2), 100–105.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1–2), 117–132.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers and Geosciences, 74(1), 60–70.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using Random Forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25(1), 35–50.

    Article  Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research, 14(1), 47–63.

    Article  Google Scholar 

  • Chen, Y. L. (2003). Indicator pattern combination for mineral resource potential mapping with the general C-F model. Mathematical Geology, 35(3), 301–321.

    Article  Google Scholar 

  • Chen, Y. L. (2004). MRPM: Three visual basic programs for mineral resource potential mapping. Computers and Geosciences, 30(9–10), 969–983.

    Article  Google Scholar 

  • Chen, Y. L. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760.

    Article  Google Scholar 

  • Chen, Y. L., Lu, L. J., & Li, X. B. (2014). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. Journal of Geochemical Exploration, 140, 56–63.

    Article  Google Scholar 

  • Chen, Y. L., & Wu, W. (2016). A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geology Reviews, 74, 26–38.

    Article  Google Scholar 

  • Chen, Y. L., & Wu, W. (2017a). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213.

    Article  Google Scholar 

  • Chen, Y. L., & Wu, W. (2017b). Mapping mineral prospectivity by using one class support vector machine to identify multivariate geological anomalies from digital geological survey. Australian Journal of Earth Sciences, 44(5), 639–651.

    Article  Google Scholar 

  • Chen, Y. L., & Wu, W. (2017c). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration Environment, Analysis, 17, 231–238.

    Google Scholar 

  • Cheng, Q. M. (2015). Boost WofE: A new sequential weights of evidence model reducing the effect of conditional dependency. Mathematical Geosciences, 47(5), 591–621.

    Article  Google Scholar 

  • Cheng, Q. M., Chen, Z. J., & Khaled, A. (2007). Application of fuzzy weights of evidence method in mineral resource assessment for gold in Zhenyuan District, Yunnan Province, China. Earth Science—Journal of China University of Geosciences, 32(2), 175–184. (In Chinese with English Abstract).

    Google Scholar 

  • Chung, C. F., & Moon, W. M. (1990). Combination rules of spatial geoscience data for mineral exploration. Geoinformatics, 2, 159–169.

    Article  Google Scholar 

  • David, P. M. W. (2011). Evaluation: From precision, recall and F-score to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1), 37–63.

    Google Scholar 

  • D’Ercole, C., Groves, D. I., & Knox-Robinson, C. M. (2000). Using fuzzy logic in a geographic information system environment to enhance conceptually based prospectivity analysis of Mississippi valley-type mineralization. Australian Journal of Earth Sciences, 47(5), 913–927.

    Article  Google Scholar 

  • Ding, Z., & Fei, M. (2013). An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. In 3rd IFAC international conference on intelligent control and automation science (Vol. 46(20), pp. 12–17). Chengdu: The International Federation of Automatic Control.

  • Elliott, B. A., Verma, R., & Kyle, J. R. (2016). Prospectivity modeling for Cambrian-Ordovician hydraulic fracturing sand resources around the Llano Uplift, Central Texas. Natural Resources Research, 25(4), 389–415.

    Article  Google Scholar 

  • Ford, A., Miller, J. M., & Mol, A. G. (2015). A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation. Natural Resources Research, 25(1), 19–33.

    Article  Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Article  Google Scholar 

  • Geranian, H., Tabatabaei, S. H., Asadi, H. H., & Carranza, E. J. M. (2016). Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit, NW Iran. Natural Resources Research, 25(2), 145–159.

    Article  Google Scholar 

  • Gonbadi, A. G., Tabatabaei, S. H., & Carranza, E. J. M. (2015). Supervised geochemical anomaly detection by pattern recognition. Journal of Geochemical Exploration, 157, 81–91.

    Article  Google Scholar 

  • Harris, D., & Pan, G. (1999). Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8(2), 93–109.

    Article  Google Scholar 

  • Harris, D., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research, 12(4), 241–255.

    Article  Google Scholar 

  • He, Y., Zhu, X., Wang, G., Sun, H., & Wang, Y. (2017). Predicting bugs in software code changes using isolation forest. In IEEE international conference on software quality, reliability and security (QRS 2017) (pp. 297–305). Prague: IEEE Press.

  • Jia, S. S., Zhao, C. F., Wang, E. D., Fu, J. F., & Xi, X. F. (2008). The study on regional tectonics of Jinying gold ore in Baishan City, Jilin Province. Geotectonica et Metallogenia, 32(4), 492–499. (In Chinese with English Abstract).

    Google Scholar 

  • Karimi, M., Menhaj, M. B., & Mesgari, M. S. (2008). Preparing mineral potential map using fuzzy logic in GIS environment. In The international archives of the photogrammetry, remote sensing and spatial information sciences, l, XXXVII, Part B8 (pp. 1263–1270). Beijing: International Society for Photogrammetry and Remote Sensing.

  • Knox-Robinson, C. M. (2000). Vectorial fuzzy logic: A novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, western Australia. Australian Journal of Earth Sciences, 47(5), 929–941.

    Article  Google Scholar 

  • Li, B. Y., Yang, Z. Y., & Wang, Y. F. (2010). Geological characteristics and genesis of Huanggoushan and Banmiaozi gold deposits in Laoling metallogenic belt of southern Jilin. Global Geology, 29(3), 392–399. (In Chinese with English Abstract).

    Google Scholar 

  • Liu, W., Deng, J., Chu, X. L., Zhai, Y. S., Xu, G. Z., & Li, X. J. (2000). Characteristics and geological background of formation of large and giant ore deposits within the northern margin of the north China platform. Progress in Geophysics, 15(2), 67–78. (In Chinese with English Abstract).

    Google Scholar 

  • Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In Proceedings of the eighth IEEE international conference on data mining (ICDM) (pp. 413–422). Pisa: IEEE Press.

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral system approach into an effective exploration targeting system. Ore Geology Reviews, 38(3), 128–138.

    Article  Google Scholar 

  • McKay, G., & Harris, J. R. (2016). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25(2), 125–143.

    Article  Google Scholar 

  • Mejia-Herrera, P., Royey, J. J., Caumon, G., & Cheilletz, A. (2015). Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials. Natural Resources Research, 24(3), 275–290.

    Article  Google Scholar 

  • Molan, Y. E., & Behnia, P. (2013). Prospectivity mapping of Pb–Zn SEDEX mineralization using remote-sensing data in the Behabad area, Central Iran. International Journal of Remote Sensing, 34(4), 1164–1179.

    Article  Google Scholar 

  • Nykänen, V., Groves, D. I., Ojala, V. J., & Gardoll, S. J. (2008). Combined conceptual/empirical prospectivity mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55(1), 39–59.

    Article  Google Scholar 

  • Oh, H. J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea. Natural Resources Research, 19(2), 103–124.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15(1), 1–15.

    Article  Google Scholar 

  • Puggini, L., & McLoone, S. (2018). An enhanced variable selection and isolation forest based methodology for anomaly detection with OES data. Engineering Applications of Artificial Intelligence, 67, 126–135.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7), 1336–1354.

    Article  Google Scholar 

  • Schisterman, E. F., Perkins, N. J., Liu, A., & Bondell, H. (2005). Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology, 16, 73–81.

    Article  Google Scholar 

  • Skabar, A. A. (2003). Mineral potential mapping using feed-forward neural networks. In Proceedings of the international joint conference on neural networks (Vol. 3, 1814–1819). Portland: IEEE Press.

  • Susto, G. A., Beghi, A., & McLoone, S. (2107). Anomaly detection through on-line isolation forest: An application to plasma etching. In 28th annual SEMI advanced semiconductor manufacturing conference (ASMC 2017) (pp. 89–94). Saratoga Springs: IEEE Press.

  • Tangestani, M. H., & Moore, F. (2001). Porphyry copper potential mapping using the weights-of-evidence model in a GIS, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 48(5), 913–927.

    Article  Google Scholar 

  • Varian, H. (2005). Bootstrap tutorial. Mathematica Journal, 9, 768–775.

    Google Scholar 

  • Wu, F., Lin, J., Wilde, S. A., Zhang, Q., & Yang, J. (2005). Nature and significance of early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1–2), 103–119.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2017). Effects of misclassification costs on mapping mineral prospectivity. Ore Geology Reviews, 82, 1–9.

    Article  Google Scholar 

  • Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3, 32–35.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers and Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47–60.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Article  Google Scholar 

  • Zhang, L. M., Wang, D. S., & Zhang, D. W. (2011). Geologic characteristics, ore-controlling factors and prospects of the Gaoligou gold deposit in Jilin Province. Geology and Resources, 20(5), 350–353. (In Chinese with English Abstract).

    Google Scholar 

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59(3), 556–572.

    Article  Google Scholar 

  • Zheng, C. J. (1995). The geological features and origin of the Huanggoushan gold deposit, Jilin Province. Jilin Geology, 14(3), 1–16. (In Chinese with English Abstract).

    Google Scholar 

  • Zhong, G. J., Run, T. Y., & Cai, Y. (2014). Geological features and origin of Cuocaogou gold deposit. Western Prospecting Engineering, 3, 117–124. (In Chinese Without English Abstract).

    Google Scholar 

  • Zhou, X. B., Li, J. F., Wang, K. Y., Liang, Y. H., Zhang, M., Wei, L. M., et al. (2016). Geochemical characteristics of ore-forming fluid in Huanggoushan gold deposit, Jilin Province. Earth Science, 41(1), 121–130. (In Chinese with English Abstract).

    Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral potential. Computers and Geosciences, 37(12), 1967–1975.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Editor Carranza for his help which greatly improved the English of the manuscript. We are also grateful to Profs. Zuo and Yousefi for their constructive comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41472299 and 41672322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, W. Isolation Forest as an Alternative Data-Driven Mineral Prospectivity Mapping Method with a Higher Data-Processing Efficiency. Nat Resour Res 28, 31–46 (2019). https://doi.org/10.1007/s11053-018-9375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9375-6

Keywords

Navigation