Skip to main content

Advertisement

Log in

Prediction of Blast-induced Air Over-pressure in Open-Pit Mine: Assessment of Different Artificial Intelligence Techniques

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Air over-pressure (AOp) is one of the products of blasting operations for rock fragmentation in open-pit mines. It can cause structural vibration, smash glass doors, adversely affect the surrounding environment, and even be fatal to humans. To assess its dangerous effects, seven artificial intelligence (AI) methods for predicting specific blast-induced AOp have been applied and compared in this study. The seven methods include random forest, support vector regression, Gaussian process, Bayesian additive regression trees, boosted regression trees, k-nearest neighbors, and artificial neural network (ANN). An empirical technique was also used to compare with AI models. The degree of complexity and the performance of the models were compared with each other to find the optimal model for predicting blast-induced AOp. The Deo Nai open-pit coal mine (Vietnam) was selected as a case study where 113 blasting events have been recorded. Indicators used for evaluating model performances include the root-mean-square error (RMSE), determination coefficient (R2), and mean absolute error (MAE). The results indicate that AI techniques provide better performance than the empirical method. Although the relevance of the empirical approach was acceptable (R2 = 0.930) in this study, its error (RMSE = 7.514) is highly significant to guarantee the safety of the surrounding environment. In contrast, the AI models offer much higher accuracies. Of the seven AI models, ANN was the most dominant model based on RMSE, R2, and MAE. This study demonstrated that AI techniques are excellent for predicting blast-induced AOp in open-pit mines. These techniques are useful for blasters and managers in controlling undesirable effects of blasting operations on the surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Alel, M. N. A., Upom, M. R. A., Abdullah, R. A., & Abidin, M. H. Z. (2018). Optimizing blasting’s air overpressure prediction model using swarm intelligence. In Journal of Physics: Conference Series (vol. 995, vol. 1, pp. 012046). IOP Publishing.

  • Al-Hussaini, T. M., & Ahmad, S. (1991). Design of wave barriers for reduction of horizontal ground vibration. Journal of Geotechnical Engineering,117(4), 616–636.

    Article  Google Scholar 

  • Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician,46(3), 175–185.

    Google Scholar 

  • Amini, H., Gholami, R., Monjezi, M., Torabi, S. R., & Zadhesh, J. (2012). Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Computing and Applications,21(8), 2077–2085.

    Article  Google Scholar 

  • AminShokravi, A., Eskandar, H., Derakhsh, A. M., Rad, H. N., & Ghanadi, A. (2018). The potential application of particle swarm optimization algorithm for forecasting the air-overpressure induced by mine blasting. Engineering with Computers,34(2), 277–285.

    Article  Google Scholar 

  • Andersen, L., & Nielsen, S. R. (2005). Reduction of ground vibration by means of barriers or soil improvement along a railway track. Soil Dynamics and Earthquake Engineering,25(7–10), 701–716.

    Article  Google Scholar 

  • Armaghani, D. J., Hajihassani, M., Marto, A., Faradonbeh, R. S., & Mohamad, E. T. (2015a). Prediction of blast-induced air overpressure: A hybrid AI-based predictive model. Environmental Monitoring and Assessment,187(11), 666.

    Article  Google Scholar 

  • Armaghani, D. J., Hajihassani, M., Sohaei, H., Mohamad, E. T., Marto, A., Motaghedi, H., et al. (2015b). Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arabian Journal of Geosciences,8(12), 10937–10950.

    Article  Google Scholar 

  • Armaghani, D. J., Hasanipanah, M., Mahdiyar, A., Majid, M. Z. A., Amnieh, H. B., & Tahir, M. M. (2016a). Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Computing and Applications,29, 1–11.

    Google Scholar 

  • Armaghani, D. J., Hasanipanah, M., Mahdiyar, A., Majid, M. Z. A., Amnieh, H. B., & Tahir, M. M. (2018). Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Computing and Applications,29(9), 619–629.

    Article  Google Scholar 

  • Armaghani, D. J., Hasanipanah, M., & Mohamad, E. T. (2016b). A combination of the ICA-ANN model to predict air-overpressure resulting from blasting. Engineering with Computers,32(1), 155–171.

    Article  Google Scholar 

  • Army, U. (1998). Technical manual design and analysis of hardened structures to conventional weapons effects. Army TM5-855-1, Washington DC.

  • Asif, Z., Chen, Z., & Zhu, Z. H. (2018). An integrated life cycle inventory and artificial neural network model for mining air pollution management. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1813-9.

    Article  Google Scholar 

  • Azuma, K., Ikeda, K., Kagi, N., Yanagi, U., & Osawa, H. (2018). Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants. Science of the Total Environment,616, 1649–1655.

    Article  Google Scholar 

  • Bakhtavar, E., Nourizadeh, H., & Sahebi, A. (2017). Toward predicting blast-induced flyrock: a hybrid dimensional analysis fuzzy inference system. International Journal of Environmental Science and Technology,14(4), 717–728.

    Article  Google Scholar 

  • Basak, D., Pal, S., & Patranabis, D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews,11(10), 203–224.

    Google Scholar 

  • Bleich, J., & Kapelner, A. (2014). Bayesian additive regression trees with parametric models of heteroskedasticity. arXiv preprint arXiv:1402.5397.

  • Bleich, J., Kapelner, A., George, E. I., & Jensen, S. T. (2014). Variable selection for BART: An application to gene regulation. The Annals of Applied Statistics,8, 1750–1781.

    Article  Google Scholar 

  • Bowen, I. G., Fletcher, E. R., & Richmond, D. R. (1968). Estimate of man’s tolerance to the direct effects of air blast. Report period. Washington, D.C.: Defense Atomic Support Agency, Lovelace Foundation for Medical Education and Research Albuquerque NM.

  • Breiman, L. (1999). Random forests. Technical Report TR567 (pp. 1–34). University of California-Berkeley, Statistics Department.

  • Breiman, L. (2001). Random forests. Machine Learning,45(1), 5–32.

    Article  Google Scholar 

  • Carver, R. H., & Nash, J. G. (2011). Doing data analysis with SPSS: version 18.0: Cengage Learning.

  • Chae, D.-K., Lee, S.-C., Lee, S.-Y., & Kim, S.-W. (2018). On identifying k-nearest neighbors in neighborhood models for efficient and effective collaborative filtering. Neurocomputing,278, 134–143.

    Article  Google Scholar 

  • Chafi, M., Karami, G., & Ziejewski, M. (2010). Biomechanical assessment of brain dynamic responses due to blast pressure waves. Annals of Biomedical Engineering,38(2), 490–504.

    Article  Google Scholar 

  • Chakraborty, A., & Goswami, D. (2017). Slope stability prediction using artificial neural network (ANN). International Journal of Engineering and Computer Science, 6(6), 21845–21848. https://doi.org/10.18535/ijecs/v6i6.49.

    Article  Google Scholar 

  • Chen, Z., & Wang, B. (2018). How priors of initial hyper-parameters affect Gaussian process regression models. Neurocomputing,275, 1702–1710.

    Article  Google Scholar 

  • Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics,4(1), 266–298.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support vector machine. Machine Learning,20(3), 273–297.

    Google Scholar 

  • Easley, M., Haney, L., Paul, J., Fowler, K., & Wu, H. (2018). Deep neural networks for short-term load forecasting in ERCOT system. In Texas Power and Energy Conference (TPEC), 2018 IEEE, IEEE (pp. 1–6).

  • Effron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Monographs on Statistics and Applied Probability,57, 436.

    Google Scholar 

  • Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology,77(4), 802–813.

    Article  Google Scholar 

  • Fan, G., Xie, J., Yoshino, H., Yanagi, U., Hasegawa, K., Kagi, N., et al. (2018). Indoor environmental conditions in urban and rural homes with older people during heating season: A case in cold region, China. Energy and Buildings,167, 334–346.

    Article  Google Scholar 

  • Faradonbeh, R. S., Hasanipanah, M., Amnieh, H. B., Armaghani, D. J., & Monjezi, M. (2018). Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environmental Monitoring and Assessment,190(6), 351.

    Article  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics,28(2), 337–407.

    Article  Google Scholar 

  • Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert,6(4), 46–51.

    Google Scholar 

  • Goh, A. T. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering,9(3), 143–151.

    Article  Google Scholar 

  • Gurney, K. (2014). An introduction to neural networks. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Hajihassani, M., Armaghani, D. J., Sohaei, H., Mohamad, E. T., & Marto, A. (2014). Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Applied Acoustics,80, 57–67.

    Article  Google Scholar 

  • Hasanipanah, M., Amnieh, H. B., Khamesi, H., Armaghani, D. J., Golzar, S. B., & Shahnazar, A. (2018). Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system. International Journal of Environmental Science and Technology,15(3), 551–560.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D. J., Khamesi, H., Amnieh, H. B., & Ghoraba, S. (2016). Several non-linear models in estimating air-overpressure resulting from mine blasting. Engineering with Computers,32(3), 441–455.

    Article  Google Scholar 

  • Hasanipanah, M., Faradonbeh, R. S., Amnieh, H. B., Armaghani, D. J., & Monjezi, M. (2017a). Forecasting blast-induced ground vibration developing a CART model. Engineering with Computers,33(2), 307–316.

    Article  Google Scholar 

  • Hasanipanah, M., Faradonbeh, R. S., Armaghani, D. J., Amnieh, H. B., & Khandelwal, M. (2017b). Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environmental Earth Sciences,76(1), 27.

    Article  Google Scholar 

  • Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D. J., & Farazmand, A. (2015). Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement,75, 289–297.

    Article  Google Scholar 

  • Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S. A., & Qaleh, A. Z. A. (2017c). Prediction of blast-produced ground vibration using particle swarm optimization. Engineering with Computers,33(2), 173–179.

    Article  Google Scholar 

  • Hasanipanah, M., Shahnazar, A., Amnieh, H. B., & Armaghani, D. J. (2017d). Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model. Engineering with Computers,33(1), 23–31.

    Article  Google Scholar 

  • Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics,20(1), 217–240.

    Article  Google Scholar 

  • Hresc, J., Riley, E., & Harris, P. (2018). Mining project’s economic impact on local communities, as a social determinant of health: A documentary analysis of environmental impact statements. Environmental Impact Assessment Review,72, 64–70.

    Article  Google Scholar 

  • Hustrulid, (1999). Blasting principles for open-pit blasting: theoretical foundations. Rotterdam: Balkema.

    Google Scholar 

  • Hustrulid, Kuchta, M., & Martin, R. K. (2013). Open pit mine planning and design, two volume set & CD-ROM pack. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Iphar, M., Yavuz, M., & Ak, H. (2008). Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Environmental Geology,56(1), 97–107.

    Article  Google Scholar 

  • Jayalakshmi, T., & Santhakumaran, A. (2011). Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering,3(1), 1793–8201.

    Google Scholar 

  • Khandelwal, M., & Kankar, P. (2011). Prediction of blast-induced air overpressure using support vector machine. Arabian Journal of Geosciences,4(3–4), 427–433.

    Article  Google Scholar 

  • Khandelwal, M., & Singh, T. (2005). Prediction of blast induced air overpressure in opencast mine. Noise & Vibration Worldwide,36(2), 7–16.

    Article  Google Scholar 

  • Khandelwal, M., & Singh, T. (2013). Application of an expert system to predict maximum explosive charge used per delay in surface mining. Rock Mechanics and Rock Engineering,46(6), 1551–1558.

    Article  Google Scholar 

  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Appears in the international joint conference on artificial intelligence (pp. 1137–1145). Montreal, Canada.

  • Koike, K., & Matsuda, S. (2003). Characterizing content distributions of impurities in a limestone mine using a feedforward neural network. Natural Resources Research,12(3), 209–222.

    Article  Google Scholar 

  • Kuzu, C., Fisne, A., & Ercelebi, S. (2009). Operational and geological parameters in the assessing blast induced airblast-overpressure in quarries. Applied Acoustics,70(3), 404–411.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News,2(3), 18–22.

    Google Scholar 

  • Linero, A. R. (2018). Bayesian regression trees for high-dimensional prediction and variable selection. Journal of the American Statistical Association,113, 1–11.

    Article  Google Scholar 

  • Loder, B. (1987). National Association of Australian State Road Authorities. In Australian Workshop for Senior ASEAN Transport Officials, 1985, Canberra.

  • Longjun, D., Xibing, L., Ming, X., & Qiyue, L. (2011). Comparisons of random forest and support vector machine for predicting blasting vibration characteristic parameters. Procedia Engineering,26, 1772–1781.

    Article  Google Scholar 

  • Lu, S., Qiu, X., Shi, J., Li, N., Lu, Z.-H., Chen, P., et al. (2017). A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders),16(1), 23–29.

    Google Scholar 

  • Mahdiyar, A., Marto, A., & Mirhosseinei, S. A. (2018). Probabilistic air-overpressure simulation resulting from blasting operations. Environmental Earth Sciences,77(4), 123.

    Article  Google Scholar 

  • Mayor, R., & Flanders, R. (1990). Technical manual simplified computer model of air blast effects on building walls. Washington: US Department of State, Office of Diplomatic Security.

    Google Scholar 

  • Mayorga, M. A. (1997). The pathology of primary blast overpressure injury. Toxicology,121(1), 17–28.

    Article  Google Scholar 

  • McKenzie, C. (1990). Quarry blast monitoring: technical and environmental perspectives. Quarry Management,17, 23–24.

    Google Scholar 

  • Michieka, N. M. (2014). Energy and the environment: The relationship between coal production and the environment in China. Natural Resources Research,23(2), 285–298.

    Article  Google Scholar 

  • Mohamad, E. T., Hajihassani, M., Armaghani, D. J., & Marto, A. (2012). Simulation of blasting-induced air overpressure by means of artificial neural networks. International Review on Modelling and Simulations,5, 2501–2506.

    Google Scholar 

  • Mohamed, M. T. (2009). Artificial neural network for prediction and control of blasting vibrations in Assiut (Egypt) limestone quarry. International Journal of Rock Mechanics and Mining Sciences,46(2), 426–431.

    Article  Google Scholar 

  • Mohamed, M. T. (2011). Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. International Journal of Rock Mechanics and Mining Sciences,48(5), 845–851.

    Article  Google Scholar 

  • Monjezi, M., Hasanipanah, M., & Khandelwal, M. (2013). Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing and Applications,22(7–8), 1637–1643.

    Article  Google Scholar 

  • Monjezi, M., Khoshalan, H. A., & Varjani, A. Y. (2012). Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arabian Journal of Geosciences,5(3), 441–448.

    Article  Google Scholar 

  • Müller, D., Leitão, P. J., & Sikor, T. (2013). Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agricultural Systems,117, 66–77.

    Article  Google Scholar 

  • Nateghi, R., Kiany, M., & Gholipouri, O. (2009). Control negative effects of blasting waves on concrete of the structures by analyzing of parameters of ground vibration. Tunnelling and Underground Space Technology,24(6), 608–616.

    Article  Google Scholar 

  • Nguyen, H., & Bui, X.-N. (2018). Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research, 1–15. https://doi.org/10.1007/s11053-018-9424-1.

  • Nguyen, H., Bui, X.-N., Bui, H.-B., & Mai, N.-L. (2018a). A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam. Neural Computing and Applications, 1–17, https://doi.org/10.1007/s00521-018-3717-5.

  • Nguyen, H., Bui, X.-N., Tran, Q.-H., Le, T.-Q., Do, N.-H., & Hoa, L. T. T. (2018b). Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam. [journal article]. SN Applied Sciences,1(1), 125. https://doi.org/10.1007/s42452-018-0136-2.

    Article  Google Scholar 

  • Nick, N. (2008). Joseph Juran, 103, pioneer in quality control, dies. New York Times,3, 3.

    Google Scholar 

  • Ogutu, J. O., Piepho, H.-P., & Schulz-Streeck, T. A. (2011). Comparison of random forests, boosting and support vector machines for genomic selection. In BMC Proceedings, (Vol. 5, Vol. 3 pp. S11). BioMed Central.

  • Olden, J. D., Joy, M. K., & Death, R. G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling,178(3–4), 389–397.

    Article  Google Scholar 

  • Perez, L. G., Flechsig, A. J., Meador, J. L., & Obradovic, Z. (1994). Training an artificial neural network to discriminate between magnetizing inrush and internal faults. IEEE Transactions on Power Delivery,9(1), 434–441.

    Article  Google Scholar 

  • Prashanth, R., & Nimaje, D. (2018). Estimation of ambiguous blast-induced ground vibration using intelligent models: A case study. Noise & Vibration Worldwide,49(4), 147–157.

    Article  Google Scholar 

  • Protodiakonov, M., Koifman, M., Chirkov, S., Kuntish, M., & Tedder, R. (1964). Rock strength passports and methods for their determination. Moscow: Nauka.

    Google Scholar 

  • Raina, A., Haldar, A., Chakraborty, A., Choudhury, P., Ramulu, M., & Bandyopadhyay, C. (2004). Human response to blast-induced vibration and air-overpressure: An Indian scenario. Bulletin of Engineering Geology and the Environment,63(3), 209–214.

    Article  Google Scholar 

  • Rasmussen, C. E. (2004). Gaussian processes in machine learning. Advanced lectures on machine learning: ML summer schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August 4-16, 2003, Revised Lectures, 3176, 63.

  • Remennikov, A. M., & Rose, T. A. (2007). Predicting the effectiveness of blast wall barriers using neural networks. International Journal of Impact Engineering,34(12), 1907–1923.

    Article  Google Scholar 

  • Rodríguez, R., Toraño, J., & Menéndez, M. (2007). Prediction of the airblast wave effects near a tunnel advanced by drilling and blasting. Tunnelling and Underground Space Technology,22(3), 241–251.

    Article  Google Scholar 

  • Sakia, R. (1992). The box-cox transformation technique: A review. The Statistician,41, 169–178.

    Article  Google Scholar 

  • Särkkä, S., Álvarez, M. A., & Lawrence, N. D. (2017). Gaussian process latent force models for learning and stochastic control of physical systems. arXiv preprint arXiv:1709.05409.

  • Sawmliana, C., Roy, P. P., Singh, R., & Singh, T. (2007). Blast induced air overpressure and its prediction using artificial neural network. Mining Technology,116(2), 41–48.

    Article  Google Scholar 

  • Schalkoff, R. J. (1997). Artificial neural networks (Vol. 1). New York: McGraw-Hill.

    Google Scholar 

  • Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.), Nonlinear estimation and classification (pp. 149–171). New York, NY: Springer.

    Chapter  Google Scholar 

  • Schreiter, J., Nguyen-Tuong, D., & Toussaint, M. (2016). Efficient sparsification for Gaussian process regression. Neurocomputing,192, 29–37.

    Article  Google Scholar 

  • Seeger, M. (2004). Gaussian processes for machine learning. International Journal of Neural Systems,14(02), 69–106.

    Article  Google Scholar 

  • Segarra, P., Domingo, J., López, L., Sanchidrián, J., & Ortega, M. (2010). Prediction of near field overpressure from quarry blasting. Applied Acoustics,71(12), 1169–1176.

    Article  Google Scholar 

  • Shi, X.-Z., Jian, Z., Wu, B.-B., Huang, D., & Wei, W. (2012). Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Transactions of Nonferrous Metals Society of China,22(2), 432–441.

    Article  Google Scholar 

  • Shields, D. J. (1998). Nonrenewable resources in economic, social, and environmental sustainability. Nonrenewable Resources,7(4), 251–261.

    Article  Google Scholar 

  • Shokri, B. J., Ardejani, F. D., & Ramazi, H. (2016). Environmental geochemistry and acid mine drainage evaluation of an abandoned coal waste pile at the Alborz-Sharghi coal washing plant, NE Iran. Natural Resources Research,25(3), 347–363.

    Article  Google Scholar 

  • Singh, T., Dontha, L., & Bhardwaj, V. (2008). Study into blast vibration and frequency using ANFIS and MVRA. Mining Technology,117(3), 116–121.

    Article  Google Scholar 

  • Siskind, D. E., Stachura, V. J., Stagg, M. S., & Kopp, J. W. (1980). Structure response and damage produced by airblast from surface mining. Report of investigations 8485. Washington, DC: United States Bureau of Mines.

  • Smola, A. J., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks,11(4), 637–649.

    Article  Google Scholar 

  • Song, Y., Liang, J., Lu, J., & Zhao, X. (2017). An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing,251, 26–34.

    Article  Google Scholar 

  • Swingler, K. (1996). Applying neural networks: A practical guide. Burlington: Morgan Kaufmann.

    Google Scholar 

  • Tessema, A. (2017). Mineral systems analysis and artificial neural network modeling of chromite prospectivity in the Western Limb of the Bushveld Complex, South Africa. Natural Resources Research,26(4), 465–488.

    Article  Google Scholar 

  • Trevor, H., Robert, T., & Jh, F. (2009). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.

    Google Scholar 

  • Tyree, S., Weinberger, K. Q., Agrawal, K., & Paykin, J. (2011). Parallel boosted regression trees for web search ranking. In Proceedings of the 20th International Conference on World Wide Web, (pp. 387–396). ACM.

  • Verma, A., & Singh, T. (2011). Intelligent systems for ground vibration measurement: A comparative study. Engineering with Computers,27(3), 225–233.

    Article  Google Scholar 

  • Vinacomin. (2010). Report of coal reserve in Quang Ninh province, Vietnam (in Vietnamese-unpublished). Coal Reserve in Vietnam. Vietnam: Vinacomin.

  • Vinacomin. (2015). Report on geological exploration of Coc Sau open pit coal mine, Quang Ninh, Vietnam (in Vietnamse-unpublished). Vietnam: Vinacomin.

  • Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research,30(1), 79–82.

    Article  Google Scholar 

  • Zerguine, A., Shafi, A., & Bettayeb, M. (2001). Multilayer perceptron-based DFE with lattice structure. IEEE Transactions on Neural Networks,12(3), 532–545.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Hanoi University of Mining and Geology (HUMG) and Ministry of Education and Training of Vietnam (MOET). We also thank the Center for Mining, Electro-Mechanical Research of HUMG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan-Nam Bui or Hoang Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, XN., Nguyen, H., Le, HA. et al. Prediction of Blast-induced Air Over-pressure in Open-Pit Mine: Assessment of Different Artificial Intelligence Techniques. Nat Resour Res 29, 571–591 (2020). https://doi.org/10.1007/s11053-019-09461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09461-0

Keywords

Navigation