Skip to main content

Advertisement

Log in

Prediction of Vibration Velocity Generated in Mine Blasting Using Support Vector Regression Improved by Optimization Algorithms

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Ground vibration generated from blasting is a detrimental side effect of the use of explosives to break the rock mass in mines. Therefore, accurately predicting ground vibration is a practical need, especially for safety issues. This research proposes hybrid artificial intelligence schemes for predicting ground vibration. The approaches are based on support vector regression (SVR) optimized with firefly algorithm (FFA), genetic algorithm (GA), and particle swarm optimization (PSO). Additionally, a hybrid FFA and artificial neural network (ANN) model and several well-known empirical models were also employed in this study. In the predictive modeling process, 90 sets of data, collected from two quarry mines in Iran, divided into two datasets, namely a training dataset and a testing dataset, were used. After model development, to provide an objective assessment of the predictive model performances, their results were compared based on several well-known and popular statistical criteria. FFA-SVR exhibits much more efficiency and reliability than PSO-SVR, GA-SVR, FFA–ANN models in terms of ground vibration prediction, indicating the superiority of FFA over PSO and GA in the SVR training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

References

  • Abdi, M. J., & Giveki, D. (2013). Automatic detection of erythemato-squamous diseases using PSO–SVM based on association rules. Engineering Applications of Artificial Intelligence,26, 603–608.

    Article  Google Scholar 

  • Akande, K. O., Owolabi, T. O., Olatunji, S. O., & AbdulRaheem, A. (2017). A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir. Journal of Petroleum Science and Engineering,150, 43–53.

    Article  Google Scholar 

  • Ambraseys, N. R., & Hendron, A. J. (1968). Dynamic behavior of rock masses: rock mechanics in engineering practices. London: Wiley.

    Google Scholar 

  • Amini, H., Gholami, R., Monjezi, M., Torabi, S. R., & Zadhesh, J. (2012). Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Computing and Applications,21, 2077–2085.

    Article  Google Scholar 

  • Apostolopoulos, T., & Vlachos, A. (2010). Application of the firefly algorithm for solving the economic emissions load dispatch problem. International Journal of Combinatorics,2011, 523806. https://doi.org/10.1155/2011/523806.

    Article  Google Scholar 

  • Arthur, C. K., Temeng, V. A., & Ziggah, Y. Y. (2019). Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Engineering with Computers. https://doi.org/10.1007/s00366-018-0686-3.

    Article  Google Scholar 

  • Asteris, P. G., Apostolopoulou, M., Skentou, A. D., & Antonia Moropoulou, A. (2019). Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Computers and Concrete,24(4), 329–345.

    Google Scholar 

  • Asteris, P. G., & Nikoo, M. (2019). Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-03965-1.

    Article  Google Scholar 

  • Asteris, P. G., Roussis, P. C., & Douvika, M. G. (2017). Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors,17(6), 1344.

    Article  Google Scholar 

  • Asteris, P. G., Tsaris, A. K., Cavaleri, L., Repapis, C. C., Papalou, A., Di Trapani, F., et al. (2016). Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Computational Intelligence and Neuroscience,2016, 5104907. https://doi.org/10.1155/2016/5104907.

    Article  Google Scholar 

  • Behzadafshar, K., Mohebbi, F., Soltani Tehrani, M., Hasanipanah, M., & Tabrizi, M. (2018). Predicting the ground vibration induced by mine blasting using imperialist competitive algorithm. Engineering Computation,35(4), 1774–1787.

    Article  Google Scholar 

  • Cavaleri, L., Asteris, P. G., Psyllaki, P. P., Douvika, M. G., Skentou, A. D., & Vaxevanidis, N. M. (2019). Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks. Applied Sciences,9(14), 2788.

    Article  Google Scholar 

  • Cavaleri, L., Chatzarakis, G. E., Di Trapani, F., Douvika, M. G., Roinos, K., Vaxevanidis, N. M., et al. (2017). Modeling of surface roughness in electro-discharge machining using artificial neural networks. Advances in Materials Research,6(2), 169–184.

    Google Scholar 

  • Dang, N. M., Anh, D. T., & Dang, T. D. (2019). ANN optimized by PSO and Firefly algorithms for predicting scour depths around bridge piers. Engineering with Computers. https://doi.org/10.1007/s00366-019-00824-y.

    Article  Google Scholar 

  • Davis, L. (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Duvall, W. I., & Petkof, B. (1959). Spherical propagation of explosion generated strain pulses in rock. US Bureau of Mines Report of Investigation,5483, 1959.

    Google Scholar 

  • Elbisy, M. S. (2015). Support vector machine and regression analysis to predict the field hydraulic conductivity of sandy soil. KSCE Journal of Civil Engineering,19(7), 2307–2316.

    Article  Google Scholar 

  • Elevli, B., & Arpaz, E. (2010). Evaluation of parameters affected on the blast induced ground vibration (BIGV) by using relation diagram method (RDM). Acta Montanistica Slovaca,15(4), 261–268.

    Google Scholar 

  • Fernandes Junior, F. E., & Yen, G. G. (2019). Particle swarm optimization of deep neural networks architectures for image classification. Swarm and Evolutionary Computation BASE DATA. https://doi.org/10.1016/j.swevo.2019.05.010.

    Article  Google Scholar 

  • Fister, I., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation,13, 34–46.

    Article  Google Scholar 

  • Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2011). Mixed variable structural optimization using firefly algorithm. Computers & Structures,89(23), 2325–2336.

    Article  Google Scholar 

  • Gao, W., Alqahtani, A. S., Mubarakali, A., Mavaluru, D., & Khalafi, S. (2019). Developing an innovative soft computing scheme for prediction of air overpressure resulting from mine blasting using GMDH optimized by GA. Engineering with Computers,35(131), 1–8.

    Google Scholar 

  • Ghaedi, M., Dashtian, K., Ghaedib, A. M., & Dehghanianc, N. (2016). A hybrid model of support vector regression with genetic algorithm for forecasting adsorption of malachite green onto multi-walled carbon nanotubes: central composite design optimization. Physical Chemistry Chemical Physics,18, 13310–13321.

    Article  Google Scholar 

  • Ghasemi, E., Ataei, M., & Hashemolhosseini, H. (2013). Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining. Journal of Vibration and Control,19(5), 755–770.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston: Addison-Wesley.

    Google Scholar 

  • Hajihassani, M., Jahed Armaghani, D., & Kalatehjari, R. (2018). Applications of particle swarm optimization in geotechnical engineering: a comprehensive review. Geotechnical and Geological Engineering,36(2), 705–722.

    Article  Google Scholar 

  • Hajihassani, M., Jahed Armaghani, D., Marto, A., & Mohamad, E. T. (2015a). Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment,74(3), 873–886.

    Article  Google Scholar 

  • Hajihassani, M., Jahed Armaghani, D., Monjezi, M., Mohamad, E. T., & Marto, A. (2015b). Blast-induced air and ground vibration prediction: A particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences,74, 2799–2817.

    Article  Google Scholar 

  • Hajihassani, M., Jahed Armaghani, D., Sohaei, H., Mohamad, E. T., & Marto, A. (2014). Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Applied Acoustics,80, 57–67.

    Article  Google Scholar 

  • Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, M. S. (2018a). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications,30(4), 1015–1024.

    Article  Google Scholar 

  • Hasanipanah, M., Amnieh, H. B., Khamesi, H., Armaghani, D. J., Golzar, S. B., & Shahnazar, A. (2018b). Prediction of an environmental issue of mine blasting: An imperialistic competitive algorithm-based fuzzy system. International Journal of Environmental Science and Technology,15(3), 551–560.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D. J., Amnieh, H. B., Majid, M. Z. A., & Tahir, M. M. D. (2017a). Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Computing and Applications,28(1), 1043–1050.

    Article  Google Scholar 

  • Hasanipanah, M., Faradonbeh, R. S., Amnieh, H. B., Armaghani, D. J., & Monjezi, M. (2017b). Forecasting blast-induced ground vibration developing a CART model. Engineering with Computers,33(2), 307–316.

    Article  Google Scholar 

  • Hasanipanah, M., Faradonbeh, R. S., Armaghani, D. J., Amnieh, H. B., & Khandelwal, M. (2017c). Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environmental Earth Sciences,76(1), 27.

    Article  Google Scholar 

  • Hasanipanah, M., Golzar, S. B., Larki, I. A., Maryaki, M. Y., & Ghahremanians, T. (2017d). Estimation of blast-induced ground vibration through a soft computing framework. Engineering with Computers,33(4), 951–959.

    Article  Google Scholar 

  • Hasanipanah, M., Monjezi, M., Shahnazar, A., Jahed Armaghani, D., & Farazmand, A. (2015). Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement,75, 289–297.

    Article  Google Scholar 

  • Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S. A., & Zeynali Aaq Qaleh, A. (2017e). Prediction of blast produced ground vibration using particle swarm optimization. Engineering with Computers,33(2), 173–179.

    Article  Google Scholar 

  • Hasanipanah, M., Noorian-Bidgoli, M., Armaghani, D. J., & Khamesi, H. (2016). Feasibility of PSO–ANN model for predicting surface settlement caused by tunneling. Engineering with Computers,32(4), 705–715.

    Article  Google Scholar 

  • Hasanipanah, M., Shahnazar, A., Amnieh, H. B., & Armaghani, D. J. (2017f). Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model. Engineering with Computers,33(1), 23–31.

    Article  Google Scholar 

  • Hasanipanah, M., Shahnazar, A., Arab, H., Golzar, S. B., & Amiri, M. (2017g). Developing a new hybrid-AI model to predict blast-induced backbreak. Engineering with Computers,33(3), 349–359.

    Article  Google Scholar 

  • Hecht-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theorem. In Proceedings of the first IEEE international conference on neural networks (pp. 11–14). San Diego, CA, USA.

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press.

    Google Scholar 

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks,2, 359–366.

    Article  Google Scholar 

  • Indian Standard Institute. (1973). Criteria for safety and design of structures subjected to underground blast. ISI Bull IS-6922.

  • Jahed Armaghani, D., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences,7, 5383–5396.

    Article  Google Scholar 

  • Jahed Armaghani, D., Hasanipanah, M., Bakhshandeh Amnieh, H., & Mohamad, E. T. (2018). Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Computing and Applications,29(9), 457–465.

    Article  Google Scholar 

  • Jahed Armaghani, D., Hasanipanah, M., Bakhshandeh Amnieh, H., Tien Bui, D., Mehrabi, P., & Khorami, M. (2019). Development of a novel hybrid intelligent model for solving engineering problems using GS-GMDH algorithm. Engineering with Computers. https://doi.org/10.1007/s00366-019-00769-2.

    Article  Google Scholar 

  • Jahed Armaghani, D., Raja, S. N. S. B., Faizi, K., & Rashid, A. S. A. (2015). Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Computing and Applications,28(2), 391–405.

    Article  Google Scholar 

  • Jiang, W., Arslan, C. A., Soltani Tehrani, M., Khorami, M., & Hasanipanah, M. (2019). Simulating the peak particle velocity in rock blasting projects using a neuro-fuzzy inference system. Engineering with Computers,35(4), 1203–1211.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Diego, CA: Academic Press.

    Google Scholar 

  • Keshtegar, B., Hasanipanah, M., Bakhshayeshi, I., & Sarafraz, M. E. (2019). A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method. Measurement,131, 35–41.

    Article  Google Scholar 

  • Khandelwal, M. (2010). Evaluation and prediction of blast induced ground vibration using support vector machine. International Journal of Rock Mechanics and Mining Sciences,47(3), 509–516.

    Article  Google Scholar 

  • Khandelwal, M. (2011). Blast-induced ground vibration prediction using support vector machine. Engineering with Computers,27, 193–200.

    Article  Google Scholar 

  • Khandelwal, M., & Singh, T. N. (2006). Prediction of blast induced ground vibrations and frequency in opencast mine—A neural network approach. Journal Sound Vibration,289, 711–725.

    Article  Google Scholar 

  • Khandelwal, M., & Singh, T. N. (2009). Prediction of blast induced ground vibration using artificial neural network. International Journal of Rock Mechanics and Mining Sciences,46, 1214–1222.

    Article  Google Scholar 

  • Li, Y., Zhang, S., & Zeng, X. (2009). Research of multi-population agent genetic algorithm for feature selection. Expert Systems with Applications,36(3), 11570–11581.

    Article  Google Scholar 

  • Lu, X., Hasanipanah, M., Brindhadevi, K., Amnieh, H. B., & Khalafi, S. (2019). ORELM: A novel machine learning approach for prediction of flyrock in mine blasting. Natural Resources Research. https://doi.org/10.1007/s11053-019-09532-2.

    Article  Google Scholar 

  • Luo, Z., Hasanipanah, M., Amnieh, H. B., Brindhadevi, K., & Tahir, M. M. (2019). GA-SVR: A novel hybrid data-driven model to simulate vertical load capacity of driven piles. Engineering with Computers. https://doi.org/10.1007/s00366-019-00858-2.

    Article  Google Scholar 

  • Majumder, A., Das, A., & Das, P. K. (2016). A standard deviation based firefly algorithm for multi-objective optimization of WEDM process during machining of Indian RAFM steel. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2471-9.

    Article  Google Scholar 

  • Mirhosseyni, S. H. L., & Webb, P. (2009). A hybrid fuzzy knowledge-based expert system and genetic algorithm for efficient selection and assignment of material handling equipment. Expert Systems with Applications,36(3), 11875–11887.

    Article  Google Scholar 

  • Mojtahedi, S. F. F., Ebtehaj, I., Hasanipanah, M., Bonakdari, H., & Amnieh, H. B. (2019). Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting. Engineering with Computers,35(1), 47–56.

    Article  Google Scholar 

  • Monjezi, M., Hasanipanah, M., & Khandelwal, M. (2013). Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing and Applications,22(7–8), 1637–1643.

    Article  Google Scholar 

  • Murillo-Escobar, J., Sepulveda-Suescun, J. P., Correa, M. A., & Orrego-Metaute, D. (2019). Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia. Urban Climate,29, 100473.

    Article  Google Scholar 

  • Nguyen, H., & Bui, X. N. (2018). Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research,28(3), 893–907.

    Article  Google Scholar 

  • Nguyen, H., Bui, X. N., Bui, H. B., & Cuong, D. T. (2019a). Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study. Acta Geophysica,67(2), 477–490.

    Article  Google Scholar 

  • Nguyen, H., Drebenstedt, C., Bui, X. N., & Bui, D. T. (2019b). Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Natural Resources Research. https://doi.org/10.1007/s11053-019-09470-z.

    Article  Google Scholar 

  • Nikafshan Rad, H., Bakhshayeshi, I., Wan Jusoh, W. A., Tahir, M. M., & Kok Foong, L. (2019). Prediction of flyrock in mine blasting: A new computational intelligence approach. Natural Resources Research. https://doi.org/10.1007/s11053-019-09464-x.

    Article  Google Scholar 

  • Nikafshan Rad, H., Hasanipanah, M., Rezaei, M., & Eghlim, A. L. (2018). Developing a least squares support vector machine for estimating the blast-induced flyrock. Engineering with Computers,34(4), 709–717.

    Article  Google Scholar 

  • Olanrewaju Alade, I., Abd Rahman, M. A., & Saleh, T. A. (2019). Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression model. Nano-Structures & Nano-Objects,17, 103–111.

    Article  Google Scholar 

  • Radojica, L., Kostic´, S., Pantovic´, R., & Vasovic´, N. (2014). Prediction of blast-produced ground motion in a copper mine. International Journal of Rock Mechanics and Mining Sciences,69, 19–25.

    Article  Google Scholar 

  • Rai, R., & Singh, T. N. (2004). A new predictor for ground vibration prediction and its comparison with other predictors. Indian Journal of Engineering and Materials Sciences,11(3), 178–184.

    Google Scholar 

  • Ren, F., Wu, X., Zhang, K., & Niu, R. (2015). Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges, China. Environmental Earth Sciences,73, 4791–4804.

    Article  Google Scholar 

  • Rezapour Tabari, M. M., & Zarif Sanayei, H. R. (2018). Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models. Soft Computing,23(19), 9629–9645.

    Article  Google Scholar 

  • Roy, P. P. (1991). Vibration control in an opencast mine based on improved blast vibration predictors. Mining Science and Technology,12(2), 157–165.

    Article  Google Scholar 

  • Segarra, P., Domingo, J. F., López, A. M., Sanchidrián, J. A., & Orteg, M. F. (2010). Prediction of near field overpressure from quarry blasting. Applied Acoustics,71, 1169–1176.

    Article  Google Scholar 

  • Shahnazar, A., Rad, H. N., Hasanipanah, M., Tahir, M. M., Armaghani, D. J., & Ghoroqi, M. (2017). A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model. Environmental Earth Sciences,76(15), 527.

    Article  Google Scholar 

  • Shahpoori Arani, K., Zandi, Y., Pham, B. T., Mu’azu, M. A., Katebi, J., Mohammadhassani, M., et al. (2019). Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer. Computers and Concrete,23, 061–68.

    Google Scholar 

  • Shang, Y., Nguyen, H., Bui, X. N., Tran, Q. H., & Moayedi, H. (2019). A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Natural Resources Research. https://doi.org/10.1007/s11053-019-09503-7.

    Article  Google Scholar 

  • Shirani Faradonbeh, R., Hasanipanah, M., Amnieh, H. B., Armaghani, D. J., & Monjezi, M. (2018). Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environmental Monitoring and Assessment,190(6), 351.

    Article  Google Scholar 

  • Shirani Faradonbeh, R., Jahed Armaghani, D., Bakhshandeh Amnieh, H., & Tonnizam Mohamad, E. (2016). Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2537-8.

    Article  Google Scholar 

  • Shirzad, A., Tabesh, M., & Farmani, R. (2014). A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks. KSCE Journal of Civil Engineering,18(4), 941–948.

    Article  Google Scholar 

  • Taheri, K., Hasanipanah, M., Bagheri Golzar, S., & Abd Majid, M. Z. (2017). A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration. Engineering with Computers,33, 689–700.

    Article  Google Scholar 

  • Vapnik, V. N. (1998). Statistical learning theory (p. 740). New York: Wiley.

    Google Scholar 

  • Wu, C. H., Tzeng, G. H., Goo, Y. J., & Fang, W. C. (2007). A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications,32(2), 397–408.

    Article  Google Scholar 

  • Xu, T. (2019). Blasting vibration safety criterion of surrounding rock of a circular tunnel. Geotechnical and Geological Engineering,37, 3077–3084.

    Article  Google Scholar 

  • Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In Stochastic algorithms: Foundations and applications, SAGA 2009, lecture notes in computer science (Vol. 5792, pp. 169–178).

  • Yang, X. S. (2010a). Engineering optimization: An introduction with metaheuristic applications. New York: Wiley.

    Book  Google Scholar 

  • Yang, X. S. (2010b). Firefly algorithm, Levy flights and global optimization. In M. Bramer, et al. (Eds.), Research and development in intelligent systems XXVI (pp. 209–218). London: Springer.

    Chapter  Google Scholar 

  • Yang, X. S. (2010c). Firefly algorithm, stochastic test functions and design optimization. International Journal of Bio-Inspired Computation,2, 78–84.

    Article  Google Scholar 

  • Yang, X. S. (2010d). Nature-inspired metaheuristic algorithms. Beckington: Luniver Press.

    Google Scholar 

  • Yang, H., Hasanipanah, M., Tahir, M. M., & Bui, D. T. (2019). Intelligent prediction of blasting-induced ground vibration using ANFIS optimized by GA and PSO. Natural Resources Research. https://doi.org/10.1007/s11053-019-09515-3.

    Article  Google Scholar 

  • Yang, H. Q., Li, Z., Jie, T. Q., & Zhang, Z. Q. (2018). Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunnelling and Underground Space Technology,81, 112–120.

    Article  Google Scholar 

  • Yang, H. Q., Wang, H., & Zhou, X. (2016). Analysis on the damage behavior of mixed ground during TBM cutting process. Tunnelling and Underground Space Technology,57, 55–65.

    Article  Google Scholar 

  • Yang, H. Q., Zeng, Y. Y., Lan, Y. F., & Zhou, X. P. (2014). Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading. International Journal of Rock Mechanics and Mining Sciences,69, 59–66.

    Article  Google Scholar 

  • Yaochu, J., & Branke, J. (2005). Evolutionary optimization in uncertain environments—A survey. IEEE Transactions on Evolutionary Computation,9(3), 303–317.

    Article  Google Scholar 

  • Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O., & Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology,396, 128–138.

    Article  Google Scholar 

  • Zhang, X., Nguyen, H., Bui, X. N., Tran, Q. H., Nguyen, D. A., Tien Bui, D., et al. (2019). Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost. Natural Resources Research. https://doi.org/10.1007/s11053-019-09492-7.

    Article  Google Scholar 

  • Zhou, X. P., & Yang, H. Q. (2007). Micromechanical modeling of dynamic compressive responses of mesoscopic heterogeneous brittle rock. Theoretical and Applied Fracture Mechanics,48(1), 1–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hasanipanah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Nikafshan Rad, H., Hasanipanah, M. et al. Prediction of Vibration Velocity Generated in Mine Blasting Using Support Vector Regression Improved by Optimization Algorithms. Nat Resour Res 29, 807–830 (2020). https://doi.org/10.1007/s11053-019-09597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09597-z

Keywords

Navigation