Skip to main content
Erschienen in: Neural Processing Letters 2/2018

28.11.2017

Short-Term Wind Speed Prediction Using Signal Preprocessing Technique and Evolutionary Support Vector Regression

verfasst von: Jujie Wang, Yaning Li

Erschienen in: Neural Processing Letters | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Short-term wind speed prediction is beneficial to guarantee the safety of wind power utilization and reduce the cost of wind power generation. As a kind of the powerful artificial intelligent algorithms, support vector regression (SVR) has been successfully employed in solving forecasting problems. However, due to the intrinsic complexity and multi-patterns of wind speed fluctuations, it is regarded as one of the most challenging applications for wind speed prediction. To alleviate the influence of complexity and capture these different patterns, this study proposes a novel approach named SIE–WDA–GA–SVR for short-term wind speed prediction, which applies the seasonal information extraction (SIE) and wavelet decomposition algorithm (WDA) into hybrid model that integrates the genetic algorithm (GA) into SVR. First, the proposed approach uses SIE to decompose the original wind speed into seasonal and trend components, and the seasonal indices are calculated by SIE. Second, the proposed approach uses WDA to decompose the trend component into both the approximate and the detailed scales. Third, the proposed approach uses GA–SVR to forecast the approximated and detailed scales, respectively. Then, the prediction values of the trend component can be obtained by integrating the prediction values of the approximated scale into the prediction values of the detailed scale. By integrating the seasonal indices into the prediction values of trend component, we can obtain the final forecasting results of the original wind speed. Moreover, the partial autocorrelation function is used to determine the number of input dimension for the SVR, and the GA is used to select the parameters of the SVR. Four real wind speed datasets are used as test samples to verify the proposed approach. Experimental results indicate that the proposed approach outperforms other benchmark models in four statistical error measures, and can improve the forecasting accuracy of wind speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ma L, Luan SY, Jiang CW, Liu HL, Zhang Y (2009) A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13:915–20CrossRef Ma L, Luan SY, Jiang CW, Liu HL, Zhang Y (2009) A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13:915–20CrossRef
2.
Zurück zum Zitat Bigdeli N, Afshar K, Gazafroudi AS, Ramandi MY (2013) A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada. Renew Sustain Energy Rev 27:20–9CrossRef Bigdeli N, Afshar K, Gazafroudi AS, Ramandi MY (2013) A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada. Renew Sustain Energy Rev 27:20–9CrossRef
3.
Zurück zum Zitat Abdelkafi A, Masmoudi A, Krichen L (2013) Experimental investigation on the performance of an autonomous wind energy conversion system. Int J Electr Power Energy Syst 44(1):581–90CrossRef Abdelkafi A, Masmoudi A, Krichen L (2013) Experimental investigation on the performance of an autonomous wind energy conversion system. Int J Electr Power Energy Syst 44(1):581–90CrossRef
4.
Zurück zum Zitat Liu H, Tian HQ, Chen C, Li YF (2013) An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Electr Power Energy Syst 52:161–73CrossRef Liu H, Tian HQ, Chen C, Li YF (2013) An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Electr Power Energy Syst 52:161–73CrossRef
5.
Zurück zum Zitat Georgilakis PS (2008) Technical challenges associated with the integration of wind power into power systems. Renew Sustain Energy Rev 12(3):852–63CrossRef Georgilakis PS (2008) Technical challenges associated with the integration of wind power into power systems. Renew Sustain Energy Rev 12(3):852–63CrossRef
6.
Zurück zum Zitat Foley AM, Leahy PG, Marvuglia A, McKeogh EJ (2012) Current methods and advances in forecasting of wind power generation. Renew Energy 37(1):1–8CrossRef Foley AM, Leahy PG, Marvuglia A, McKeogh EJ (2012) Current methods and advances in forecasting of wind power generation. Renew Energy 37(1):1–8CrossRef
7.
Zurück zum Zitat Wang JJ, Zhang WY, Wang JZ, Han TT, Kong LB (2014) A novel hybrid approach for wind speed prediction. Inform Sci 273:304–18CrossRef Wang JJ, Zhang WY, Wang JZ, Han TT, Kong LB (2014) A novel hybrid approach for wind speed prediction. Inform Sci 273:304–18CrossRef
8.
Zurück zum Zitat Kavasseri RG, Seetharaman K (2009) Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 34:1388–93CrossRef Kavasseri RG, Seetharaman K (2009) Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 34:1388–93CrossRef
9.
Zurück zum Zitat Mohandes M, Halawani T, Rehman S, Hussain AA (2004) Support vector machines for wind speed prediction. Renew Energy 29:939–47CrossRef Mohandes M, Halawani T, Rehman S, Hussain AA (2004) Support vector machines for wind speed prediction. Renew Energy 29:939–47CrossRef
10.
Zurück zum Zitat Morales JM, Mínguez R, Conejo AJ (2010) A methodology to generate statistically dependent wind speed scenarios. Appl Energy 87(3):843–55CrossRef Morales JM, Mínguez R, Conejo AJ (2010) A methodology to generate statistically dependent wind speed scenarios. Appl Energy 87(3):843–55CrossRef
11.
Zurück zum Zitat Fadare DA (2010) The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 87(3):934–42CrossRef Fadare DA (2010) The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 87(3):934–42CrossRef
12.
Zurück zum Zitat Wang JJ, Zhang WY, Li YN, Wang JZ, Dang ZL (2014) Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl Soft Comput 23:452–9CrossRef Wang JJ, Zhang WY, Li YN, Wang JZ, Dang ZL (2014) Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl Soft Comput 23:452–9CrossRef
13.
Zurück zum Zitat Lalarukh K, Yasmin ZJ (1997) Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Sol Energy 61(1):23–32CrossRef Lalarukh K, Yasmin ZJ (1997) Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Sol Energy 61(1):23–32CrossRef
14.
Zurück zum Zitat Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G (2008) Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J Wind Eng Ind Aerod 96:2348–62CrossRef Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G (2008) Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J Wind Eng Ind Aerod 96:2348–62CrossRef
15.
Zurück zum Zitat Malmberg A, Holst U, Holst J (2005) Forecasting near-surface ocean winds with Kalman filter techniques. Ocean Eng 32:273–91CrossRef Malmberg A, Holst U, Holst J (2005) Forecasting near-surface ocean winds with Kalman filter techniques. Ocean Eng 32:273–91CrossRef
16.
Zurück zum Zitat Bivona S, Bonanno G, Burlon R, Gurrera D, Leone C (2011) Stochastic models for wind speed forecasting. Energy Convers Manage 52:1157–65CrossRef Bivona S, Bonanno G, Burlon R, Gurrera D, Leone C (2011) Stochastic models for wind speed forecasting. Energy Convers Manage 52:1157–65CrossRef
17.
Zurück zum Zitat Shamshad A, Bawadi MA, Hussin WMAW, Majid TA, Sanusi SAM (2005) First and second order Markov chain models for synthetic generation of wind speed time series. Energy 30:693–708CrossRef Shamshad A, Bawadi MA, Hussin WMAW, Majid TA, Sanusi SAM (2005) First and second order Markov chain models for synthetic generation of wind speed time series. Energy 30:693–708CrossRef
18.
Zurück zum Zitat Cadenas E, Rivera W (2009) Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks. Renew Energy 34:274–8CrossRef Cadenas E, Rivera W (2009) Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks. Renew Energy 34:274–8CrossRef
19.
Zurück zum Zitat Li G, Shi J (2010) On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87:2313–20CrossRef Li G, Shi J (2010) On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87:2313–20CrossRef
20.
Zurück zum Zitat Flores P, Tapia A, Tapia G (2005) Application of a control algorithm for wind speed prediction and active power generation. Renew Energy 30(4):523–36CrossRef Flores P, Tapia A, Tapia G (2005) Application of a control algorithm for wind speed prediction and active power generation. Renew Energy 30(4):523–36CrossRef
21.
Zurück zum Zitat Zhou JY, Shi J, Li G (2011) Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 52:1990–8CrossRef Zhou JY, Shi J, Li G (2011) Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 52:1990–8CrossRef
22.
Zurück zum Zitat Hu QH, Zhang SG, Xie ZX, Mi JS, Wan J (2014) Noise model based \(\upnu \)-support vector regression with its application to short-term wind speed forecasting. Neural Netw 57:1–11CrossRef Hu QH, Zhang SG, Xie ZX, Mi JS, Wan J (2014) Noise model based \(\upnu \)-support vector regression with its application to short-term wind speed forecasting. Neural Netw 57:1–11CrossRef
23.
Zurück zum Zitat Kavousi-Fard A, Khosravi A, Nahavandi S (2016) A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Syst 31(1):18–26CrossRef Kavousi-Fard A, Khosravi A, Nahavandi S (2016) A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Syst 31(1):18–26CrossRef
24.
Zurück zum Zitat Santamaría-Bonfil G, Reyes-Ballesteros A, Gershenson C (2016) Wind speed forecasting for wind farms: a method based on support vector regression. Renew Energy 85:790–809CrossRef Santamaría-Bonfil G, Reyes-Ballesteros A, Gershenson C (2016) Wind speed forecasting for wind farms: a method based on support vector regression. Renew Energy 85:790–809CrossRef
25.
Zurück zum Zitat Noorollahi Y, Jokar MA, Kalhor A (2016) Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers Manage 115:17–25CrossRef Noorollahi Y, Jokar MA, Kalhor A (2016) Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers Manage 115:17–25CrossRef
26.
Zurück zum Zitat Dowell J, Pinson P (2016) Very short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE T Smart Grid 7(2):763–70 Dowell J, Pinson P (2016) Very short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE T Smart Grid 7(2):763–70
27.
Zurück zum Zitat Ghorbani MA, Khatibi R, FazeliFard MH, Naghipour L, Makarynskyy O (2016) Short-term wind speed predictions with machine learning techniques. Meteorol Atmos Phys 128:57–72CrossRef Ghorbani MA, Khatibi R, FazeliFard MH, Naghipour L, Makarynskyy O (2016) Short-term wind speed predictions with machine learning techniques. Meteorol Atmos Phys 128:57–72CrossRef
28.
Zurück zum Zitat Men ZX, Yee E, Lien FS, Wen DY, Chen YS (2016) Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew Energy 87:203–11CrossRef Men ZX, Yee E, Lien FS, Wen DY, Chen YS (2016) Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew Energy 87:203–11CrossRef
29.
Zurück zum Zitat Heinermann J, Kramer O (2016) Machine learning ensembles for wind power prediction. Renew Energy 89:671–9CrossRef Heinermann J, Kramer O (2016) Machine learning ensembles for wind power prediction. Renew Energy 89:671–9CrossRef
30.
Zurück zum Zitat Sun W, Liu MH (2016) Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers Manage 114:197–208CrossRef Sun W, Liu MH (2016) Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers Manage 114:197–208CrossRef
31.
Zurück zum Zitat Doucoure B, Agbossou K, Cardenas A (2016) Time series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed data. Renew Energy 92:202–11CrossRef Doucoure B, Agbossou K, Cardenas A (2016) Time series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed data. Renew Energy 92:202–11CrossRef
32.
Zurück zum Zitat Wang SX, Zhang N, Wu L, Wang YM (2016) Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew Energy 94:629–36CrossRef Wang SX, Zhang N, Wu L, Wang YM (2016) Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew Energy 94:629–36CrossRef
33.
Zurück zum Zitat Meng AB, Ge JF, Yin H, Chen SZ (2016) Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 114:75–88CrossRef Meng AB, Ge JF, Yin H, Chen SZ (2016) Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 114:75–88CrossRef
34.
Zurück zum Zitat Hu WB, Yan LP, Liu KZ, Wang H (2016) A Short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Process Lett 43:155–72CrossRef Hu WB, Yan LP, Liu KZ, Wang H (2016) A Short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Process Lett 43:155–72CrossRef
35.
Zurück zum Zitat Cao Q, Parry ME (2009) Neural network earnings per share forecasting models: a comparison of backward propagation and the genetic algorithm. Decis Support Syst 47:32–41CrossRef Cao Q, Parry ME (2009) Neural network earnings per share forecasting models: a comparison of backward propagation and the genetic algorithm. Decis Support Syst 47:32–41CrossRef
36.
Zurück zum Zitat Gu JR, Zhu MC, Jiang LGY (2011) Housing price forecasting based on genetic algorithm and support vector machine. Expert Syst Appl 38:3383–6CrossRef Gu JR, Zhu MC, Jiang LGY (2011) Housing price forecasting based on genetic algorithm and support vector machine. Expert Syst Appl 38:3383–6CrossRef
37.
Zurück zum Zitat Zhang GP, Qi M (2005) Neural network forecasting for seasonal and trend time series. Eur J Oper Res 160:501–14CrossRef Zhang GP, Qi M (2005) Neural network forecasting for seasonal and trend time series. Eur J Oper Res 160:501–14CrossRef
38.
Zurück zum Zitat Wang JJ (2014) A hybrid wavelet transform based short-term wind speed forecasting approach. Sci World J 914127:1–12 Wang JJ (2014) A hybrid wavelet transform based short-term wind speed forecasting approach. Sci World J 914127:1–12
39.
Zurück zum Zitat Cohen A, Daubechies I, Vial P (1993) Wavelets on the interval and fast wavelet transform. Appl Comput Harmon A 1(1):54–81MathSciNetCrossRef Cohen A, Daubechies I, Vial P (1993) Wavelets on the interval and fast wavelet transform. Appl Comput Harmon A 1(1):54–81MathSciNetCrossRef
40.
Zurück zum Zitat Gencay R, Selcuk F, Whitcher B (2001) Differentiating intraday seasonalities through wavelet multi-scaling. Phys A 289(3–4):543–56MathSciNetCrossRef Gencay R, Selcuk F, Whitcher B (2001) Differentiating intraday seasonalities through wavelet multi-scaling. Phys A 289(3–4):543–56MathSciNetCrossRef
41.
Zurück zum Zitat Cannas B, Fanni A, See L, Sias G (2006) Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth 31(18):1164–71CrossRef Cannas B, Fanni A, See L, Sias G (2006) Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth 31(18):1164–71CrossRef
42.
Zurück zum Zitat Guo ZH, Wu J, Lu HY, Wang JZ (2011) A case study on a hybrid wind speed forecasting method using BP neural network. Knowl-Based Syst 24:1048–56CrossRef Guo ZH, Wu J, Lu HY, Wang JZ (2011) A case study on a hybrid wind speed forecasting method using BP neural network. Knowl-Based Syst 24:1048–56CrossRef
44.
Zurück zum Zitat Chang SG, Yu B, Vetterli M (2000) Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans Image Process 9:1522–31MathSciNetCrossRef Chang SG, Yu B, Vetterli M (2000) Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans Image Process 9:1522–31MathSciNetCrossRef
45.
Zurück zum Zitat Ramsey JB (2002) Wavelets in economics and finance: past and future. Stud Nonlinear Dyn Econom 6:1–27MathSciNetMATH Ramsey JB (2002) Wavelets in economics and finance: past and future. Stud Nonlinear Dyn Econom 6:1–27MathSciNetMATH
46.
Zurück zum Zitat Li T, Li Q, Zhu S (2003) A survey on wavelet applications in data mining. Sigkdd Explor 4:49–68CrossRef Li T, Li Q, Zhu S (2003) A survey on wavelet applications in data mining. Sigkdd Explor 4:49–68CrossRef
47.
Zurück zum Zitat Hussain MS, Reaz MBI, Mohd-Yasin F, Ibrahimy MI (2009) Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction. Expert Syst 26:35–48CrossRef Hussain MS, Reaz MBI, Mohd-Yasin F, Ibrahimy MI (2009) Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction. Expert Syst 26:35–48CrossRef
48.
Zurück zum Zitat Lu CJ (2010) Integrating independent component analysis-based de-noising scheme with neural network for stock price prediction. Expert Syst Appl 37:7056–64CrossRef Lu CJ (2010) Integrating independent component analysis-based de-noising scheme with neural network for stock price prediction. Expert Syst Appl 37:7056–64CrossRef
49.
Zurück zum Zitat Goswami JC, Chan AK (1999) Fundamentals of wavelets: theory, algorithms, and applications. Wiley, Hoboken, pp 149–52MATH Goswami JC, Chan AK (1999) Fundamentals of wavelets: theory, algorithms, and applications. Wiley, Hoboken, pp 149–52MATH
50.
Zurück zum Zitat Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999CrossRef Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999CrossRef
51.
Zurück zum Zitat Wang H, Zhao W (2009) ARIMA model estimated by particle Swarm optimization algorithm for consumer price index forecasting, lecture notes in computer science. Artif Intell Comput Intell 5855:48–58CrossRef Wang H, Zhao W (2009) ARIMA model estimated by particle Swarm optimization algorithm for consumer price index forecasting, lecture notes in computer science. Artif Intell Comput Intell 5855:48–58CrossRef
52.
Zurück zum Zitat Guo ZH, Zhao WG, Lu HY, Wang JZ (2012) Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 37:241–9CrossRef Guo ZH, Zhao WG, Lu HY, Wang JZ (2012) Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 37:241–9CrossRef
Metadaten
Titel
Short-Term Wind Speed Prediction Using Signal Preprocessing Technique and Evolutionary Support Vector Regression
verfasst von
Jujie Wang
Yaning Li
Publikationsdatum
28.11.2017
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2018
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-017-9766-4

Weitere Artikel der Ausgabe 2/2018

Neural Processing Letters 2/2018 Zur Ausgabe

Neuer Inhalt