Skip to main content

Advertisement

Log in

Neurochemical Consequences of Dysphoric State During Amphetamine Withdrawal in Animal Models: A Review

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic abuse of amphetamines, such as d-amphetamine (AMPH) and d-methamphetamine, results in psychological dependence, a condition in which the drug produces a feeling of satisfaction and a drive that requires periodic or continuous administration of the drug to produce overwhelming pleasure or to avoid discomfort such as dysphoria. The dysphoric state of AMPH withdrawal has been recognized as depressive syndromes, such as anhedonia, depression, anxiety, and social inhibition, in early drug abstinence. Medication for treatment of the dysphoric state is important for AMPH abusers to avoid impulsive self-injurious behavior or acts that are committed with unconscious or uncontrolled suicidal ideation. However, successful treatments for AMPH withdrawal remain elusive, since the exact molecular basis of the expression of dysphoria has not been fully elucidated. This review focuses on the molecular aspects of AMPH withdrawal as indexed by neurochemical parameters under a variety of injection regimens (for example, levels of brain monoamines and their metabolites, and γ-aminobutyric acid, expression of genes and proteins involved in neuronal activity, and monoamine metabolism and availability) in rodent models which exhibit significant phenotypic features relevant to the syndromes of AMPH withdrawal in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Rossum JM (1970) Mode of action of psychomotor stimulant drugs: significance of dopamine in locomotor stimulant action. Int Rev Neurobiol 12:307–383

    Article  PubMed  Google Scholar 

  2. Groves PM, Rebec GV (1976) Biochemistry and behavior: some central actions of amphetamine and antipsychotic drugs. Annu Rev Psychol 27:91–127

    PubMed  CAS  Google Scholar 

  3. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    PubMed  CAS  Google Scholar 

  4. Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 32:639–677

    Google Scholar 

  5. Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    PubMed  CAS  Google Scholar 

  6. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    PubMed  CAS  Google Scholar 

  7. Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    PubMed  CAS  Google Scholar 

  8. Volkow ND, Fowler JS, Wang G-J, Swanson JM (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9:557–569

    PubMed  CAS  Google Scholar 

  9. Gardner EL (2004) Brain-reward mechanisms. In: Lowinson JH, Ruiz P, Millman RB, Langrod JG (eds) Substance abuse: a comprehensive textbook, 4th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 48–97

    Google Scholar 

  10. National Institute on Drug Abuse (2004) NIDA InfoFacts: methamphetamine. Accessed 15 Dec 2006 URL: http://www.nida.nih.gov/infofacts/methamphetamine.html

  11. Kosman ME, Unna DR (1968) Effects of chronic administration of the amphetamines and other stimulants on behavior. Clin Pharmacol Ther 9:240–254

    PubMed  CAS  Google Scholar 

  12. Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    PubMed  CAS  Google Scholar 

  13. Everitt BJ, Robbins TW (2004) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neurosci 8:1481–1489

    Google Scholar 

  14. Kramer JC, Fischman VS, Littlefield DC (1967) Amphetamine abuse: pattern and effects of high doses taken intravenously. JAMA 201:305–309

    PubMed  CAS  Google Scholar 

  15. Randrup A, Munkvad I (1967) Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia (Berl) 11:300–310

    CAS  Google Scholar 

  16. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11:157–198

    CAS  Google Scholar 

  17. Sato M (1992) A lasting vulnerability to psychosis in patients with previous methamphetamine psychosis. Ann NY Acad Sci 654:160–170

    PubMed  CAS  Google Scholar 

  18. Gawin FH, Ellinwood EH Jr (1988) Cocaine and other stimulants: actions, abuse, and treatment. New Eng J Med 318:1173–1182

    Article  PubMed  CAS  Google Scholar 

  19. Lago JA, Kosten TR (1994) Stimulant withdrawal. Addiction 89:1477–1481

    PubMed  CAS  Google Scholar 

  20. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington DC

    Google Scholar 

  21. Kessler RC, Nelson CB, McGonagle KA, Edlund MJ, Frank RG, Leaf PJ (1996) The epidemiology of co-occurring addictive and mental disorders: implications for prevention and service utilization. Am J Orthopsychiatry 66:17–31

    PubMed  CAS  Google Scholar 

  22. Markou A, Kosten TR, Koob GF (1998) Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18:135–174

    PubMed  CAS  Google Scholar 

  23. Kosten TR, Markou A, Koob GF (1998) Depression and stimulant dependence: neurobiology and pharmacotherapy. J Nerv Ment Dis 186:737–745

    PubMed  CAS  Google Scholar 

  24. Watson R, Hartmann E, Schildkraut JJ (1972) Amphetamine withdrawal: affective state, sleep patterns, and MHPG excretion. Am J Psychiatry 129:263–269

    PubMed  CAS  Google Scholar 

  25. McGregor C, Srisurapanont M, Jittiwutikarn J, Laobhripatr S, Wongtan T, White JM (2005) The nature, time course and severity of methamphetamine withdrawal. Addiction 100:1320–1329

    PubMed  Google Scholar 

  26. Kalechstein AD, Newton TF, Longshore D, Anglin MD, van Gorp WG, Gawin FH (2000) Psychiatric comorbidity of methamphetamine dependence in a forensic sample. J Neuropsychiatry Clin Neurosci 12:480–484

    PubMed  CAS  Google Scholar 

  27. Srisurapanont M, Jarusuraisin N, Kittirattanapaiboon P (2001) Treatment for amphetamine dependence and abuse. Cochrane Database Syst Rev 4:CD003022

    PubMed  Google Scholar 

  28. Cox D, Bowers R, McBride A (2004) Reboxetine may be helpful in the treatment of amphetamine withdrawal. Br J Clin Pharmacol 58:100–101

    PubMed  CAS  Google Scholar 

  29. Kongsakon R, Papadopoulos KI, Saguansiritham R (2005) Mirtazapine in amphetamine detoxification: a placebo-controlled pilot study. Int Clin Psychopharmacol 20:253–256

    PubMed  Google Scholar 

  30. Molina JD, de Pablo S, Lopez-Munoz F, Alamo C, Blasco-Fontecilla H, Gonzalez-Parra S (2006) Monotherapy with reboxetine in amphetamine withdrawal. Prog Neuropsychopharmacol Biol Psychiatry 30:1353–1355

    PubMed  Google Scholar 

  31. Winchel RM, Stanley M (1991) Self-injurious behavior: a review of the behavior and biology of self-mutilation. Am J Psychiatry 148:306–317

    PubMed  CAS  Google Scholar 

  32. Dopheide JA (2006) Recognizing and treating depression in children and adolescents. Am J Health Syst Pharm 63:233–243

    PubMed  Google Scholar 

  33. Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    PubMed  CAS  Google Scholar 

  34. Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    PubMed  CAS  Google Scholar 

  35. Booij L, Van der Does AJW, Riedel WJ (2003) Monoamine depletion in psychiatric and healthy population: review. Mol Psychiatry 8:951–973

    PubMed  CAS  Google Scholar 

  36. Kokkinidis L, Zacharko RM, Anisman H (1986) Amphetamine withdrawal: a behavioral evaluation. Life Sci 38:1617–1623

    PubMed  CAS  Google Scholar 

  37. Murphy CA, Fend M, Russig H, Feldon J (2001) Latent inhibition, but not prepulse inhibition, is reduced during withdrawal from an escalating dosage schedule of amphetamine. Behav Neurosci 6:1247–1256

    Google Scholar 

  38. Russig H, Pezze M-A, Nanz-Bahr NI, Pryce CR, Feldon J, Murphy CA (2003) Amphetamine withdrawal does not produce a depressive-like state in rats as measured by three behavioral tests. Behav Pharmacol 14:1–18

    PubMed  CAS  Google Scholar 

  39. Post RM (1980) Intermittent versus continuous stimulation: effect of time interval on the development of sensitization. Life Sci 26:1275–1282

    PubMed  CAS  Google Scholar 

  40. Eison MS, Eison AS, Iversen SD (1983) Two routes of continuous amphetamine administration induce different behavioral and neurochemical effects in the rat. Neurosci Lett 39:313–319

    PubMed  CAS  Google Scholar 

  41. Robinson TE, Camp DE (1987) Long-lasting effects of escalating doses of d-amphetamine on brain monoamines, amphetamine-induced stereotyped behavior and spontaneous nocturnal locomotion. Pharmacol Biochem Behav 26:821–827

    PubMed  CAS  Google Scholar 

  42. Lin D, Koob GF, Markou A (2000) Time-dependent alterations in ICSS thresholds associated with repeated amphetamine administrations. Pharmacol Biochem Behav 65:407–417

    PubMed  CAS  Google Scholar 

  43. Kuhar MJ, Pilotte NS (1996) Neurochemical changes in cocaine withdrawal. Trends Pharmacol Sci 17:260–264

    PubMed  CAS  Google Scholar 

  44. White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51:141–153

    PubMed  CAS  Google Scholar 

  45. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nature Rev Neurosci 2:119–128

    CAS  Google Scholar 

  46. Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24:1604–1611

    PubMed  CAS  Google Scholar 

  47. Gorelick DA, Gardner EL, Xi Z-X (2004) Agents in development for the management of cocaine abuse. Drugs 64:1547–1573

    PubMed  CAS  Google Scholar 

  48. Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology (Berl) 103:480–494

    CAS  Google Scholar 

  49. Russig H, Murphy CA, Feldon J (2005) Behavioural consequences of withdrawal from three different administration schedules of amphetamine. Behav Brain Res 165:26–35

    PubMed  CAS  Google Scholar 

  50. Schindler CW, Persico AM, Uhl GR, Goldberg SR (1994) Behavioral assessment of high-dose amphetamine withdrawal: importance of training and testing conditions. Pharmacol Biochem Behav 49:41–46

    PubMed  CAS  Google Scholar 

  51. Lynch MA, Leonard BE (1978) Effect of chronic amphetamine administration on the behaviour of rats in the open field apparatus: reversal of post-withdrawal depression by two antidepressants. J Pharm Pharmacol 30:798–799

    PubMed  CAS  Google Scholar 

  52. Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ, Robbins TW (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–126

    PubMed  CAS  Google Scholar 

  53. Schreiber H, Bell R, Conely L, Kufner M, Palet J, Wright L (1976) Diminished reaction to a novel stimulus during amphetamine withdrawal in rats. Pharmacol Biochem Behav 5:687–690

    PubMed  CAS  Google Scholar 

  54. Bisagno V, Ferguson D, Luine VN (2005) Chronic D-amphetamine induces sexually dimorphic effects on locomotion, recognition memory, and brain monoamines. Pharmacol Biochem Behav 74:859–867

    Google Scholar 

  55. Belcher AM, O’Dell SJ, Marshall JF (2005) Impaired object recognition memory following methamphetamine, but not p-chloroamphetamine- or d-amphetamine-induced neurotoxicity. Neuropsychopharmacology 30:2026–2034

    PubMed  CAS  Google Scholar 

  56. Lubow RE (1973) Latent inhibition. Psychol Bull 79:398–407

    PubMed  CAS  Google Scholar 

  57. Russig H, Murphy CA, Feldon J (2002) Clozapine and haloperidol reinstate latent inhibition following its disruption during amphetamine withdrawal. Neuropsychopharmacology 26:765–777

    PubMed  CAS  Google Scholar 

  58. Russig H, Murphy CA, Feldon J (2003) Prepulse inhibition during withdrawal from an escalating dosage schedule of amphetamine. Psychopharmacology (Berl) 169:340–353

    CAS  Google Scholar 

  59. Weiner I, Lubow RE, Feldon J (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology (Berl) 83:194–199

    CAS  Google Scholar 

  60. Peleg-Raibstein D, Sydekum E, Feldon J (2006) Differential effects on prepulse inhibition of withdrawal from two different repeated administration schedules of amphetamine. Int J Neuropsychopharmacol 9:737–749

    PubMed  CAS  Google Scholar 

  61. Doty RW (1969) Electrical stimulation of the brain in behavioral context. Annu Rev Psychol 20:189–320

    Google Scholar 

  62. Leith NJ, Barrett RJ (1976) Amphetamine and the reward system: evidence for tolerance and post-drug depression. Psychopharmacologia (Berl) 46:19–25

    CAS  Google Scholar 

  63. Simpson DM, Annau Z (1977) Behavioral withdrawal following several psychoactive drugs. Pharmacol Biochem Behav 7:59–64

    PubMed  CAS  Google Scholar 

  64. Kokkinidis L, Zacharko RM (1980) Response sensitization and depression following long-term amphetamine treatment in a self-stimulation paradigm. Psychopharmacology (Berl) 68:73–76

    CAS  Google Scholar 

  65. Kokkinidis L, Zacharko RM, Predy PA (1980) Post-amphetamine depression of self-stimulation responding from the substantia nigra: reversal by tricyclic antidepressants. Pharmacol Biochem Behav 13:379–383

    PubMed  CAS  Google Scholar 

  66. Cassens G, Actor C, Kling M, Schildkraut JJ (1981) Amphetamine withdrawal: effects on threshold of intracranial reinforcement. Psychopharmacology (Berl) 73:318–322

    CAS  Google Scholar 

  67. Wise RA, Munn E (1995) Withdrawal from chronic amphetamine elevates baseline intracranial self-stimulation thresholds. Psychopharmacology (Berl) 117:130–136

    CAS  Google Scholar 

  68. Lin D, Koob GF, Markou A (1999) Differential effects of withdrawal from chronic amphetamine or fluoxetine administration on brain stimulation reward in the rat—interactions between the two drugs. Psychopharmacology (Berl) 145:283–294

    CAS  Google Scholar 

  69. Barr AM, Zis AP, Phillips AG (2002) Repeated electroconvulsive shock attenuates the depressive-like effects of d-amphetamine withdrawal on brain reward function in rats. Psychopharmacology (Berl) 159:196–202

    CAS  Google Scholar 

  70. Cryan JF, Hoyer D, Markou A (2003) Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry 54:49–58

    PubMed  CAS  Google Scholar 

  71. Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38:2473–2476

    PubMed  CAS  Google Scholar 

  72. Kornetsky C, Esposito RU (1981) Reward and detection thresholds for brain stimulation: dissociative effects of cocaine. Brain Res 209:496–500

    PubMed  CAS  Google Scholar 

  73. Barr AM, Fiorino DF, Phillips AG (1999) Effects of withdrawal from an escalating dose schedule of d-amphetamine on sexual behavior in the male rat. Pharmacol Biochem Behav 64:597–604

    PubMed  CAS  Google Scholar 

  74. Pezze MA, Feldon J, Murphy CA (2002) Increased conditioned fear response and altered balance of dopamine in the shell and core of the nucleus accumbens during amphetamine withdrawal. Neuropharmacology 42:633–643

    PubMed  CAS  Google Scholar 

  75. Russig H, Durrer A, Yee BK, Murphy CA, Feldon J (2003) The acquisition, retention and reversal of spatial learning in the Morris water maze task following withdrawal from an escalating dosage schedule of amphetamine in Wistar rats. Neuroscience 119:167–179

    PubMed  CAS  Google Scholar 

  76. Peterson JD, Wolf ME, White FJ (2003) Impaired DRL 30 performance during amphetamine withdrawal. Behav Brain Res 143:101–108

    PubMed  CAS  Google Scholar 

  77. Ellinwood EH Jr, Kilbey MM (1977) Chronic stimulant intoxication models of psychosis. In: Hanin I, Usdin E (eds) Animal models in psychiatry and neurology. Pergamon Press, New York, pp 61–74

    Google Scholar 

  78. Kitanaka J, Kitanaka N, Takemura M (2006) Modification of monoaminergic activity by MAO inhibitors influences methamphetamine actions. Drug Target Insights 1:19–28. URL: http://www.la-press.com/index.php

    Google Scholar 

  79. Swerdlow NR, Hauger R, Irwin M, Koob GF, Britton KT, Pulvirenti L (1991) Endocrine, immune, and neurochemical changes in rats during withdrawal from chronic amphetamine intoxication. Neuropsychopharmacology 5:23–31

    PubMed  CAS  Google Scholar 

  80. Persico AM, Schindler CW, Zaczek R, Brannock MT, Uhl GR (1995) Brain transcription factor gene expression, neurotransmitter levels, and novelty response behaviors: alterations during rat amphetamine withdrawal and following chronic injection stress. Synapse 19:212–227

    PubMed  CAS  Google Scholar 

  81. Lynch M, Kenny M, Leonard BE (1977) The effects of chronic administration of D-amphetamine on regional changes in catecholamines in the rat brain. J Neurosci Res 3:295–300

    PubMed  CAS  Google Scholar 

  82. Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 235:93–103

    PubMed  CAS  Google Scholar 

  83. Schmidt CJ, Sonsalla PK, Hanson GR, Peat MA, Gibb JW (1985) Methamphetamine-induced depression of monoamine synthesis in the rat: development of tolerance. J Neurochem 44:852–855

    PubMed  CAS  Google Scholar 

  84. Brown JM, Hanson GR, Fleckenstein AE (2000) Methamphetamine rapidly decreases vesicular dopamine uptake. J Neurochem 74:2221–2223

    PubMed  CAS  Google Scholar 

  85. Brown JM, Riddle EL, Sandoval V, Weston RK, Hanson JE, Crosby MJ, Ugarte YV, Gibb JW, Hanson GR, Fleckenstein AE (2002) A single methamphetamine administration rapidly decreases vesicular dopamine uptake. J Pharmacol Exp Ther 302:497–501

    PubMed  CAS  Google Scholar 

  86. Persico AM, Schindler CW, Brannock MT, Gonzalez AM, Surratt CK, Uhl GR (1993) Dopaminergic gene expression during amphetamine withdrawal. Neuroreport 4:41–44

    PubMed  CAS  Google Scholar 

  87. Morgan ME, Gibb JW (1980) Short-term and long-term effects of methamphetamine on biogenic amine metabolism in extra-striatal dopaminergic nuclei. Neuropharmacology 19:989–995

    PubMed  CAS  Google Scholar 

  88. Hotchkiss AJ, Gibb JW (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J Pharmacol Exp Ther 214:257–262

    PubMed  CAS  Google Scholar 

  89. Trulson ME, Cannon MS, Faegg TS, Raese JD (1987) Tyrosine hydroxylase immunochemistry and quantitative light microscopic studies of the mesolimbic dopamine system in rat brain: effects of chronic methamphetamine administration. Brain Res Bull 18:269–277

    PubMed  CAS  Google Scholar 

  90. Broom SL, Yamamoto BK (2005) Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens of rats. Psychopharmacology (Berl) 181:467–476

    CAS  Google Scholar 

  91. Utena H, Ezoe T, Kato N, Hada H (1959) Effects of chronic administration of methamphetamine in enzymatic patterns in brain tissue. J Neurochem 4:161–169

    PubMed  CAS  Google Scholar 

  92. Egashira T, Yamanaka Y (1993) Changes in monoamine oxidase activity in mouse brain associated with d-methamphetamine dependence and withdrawal. Jpn J Pharmacol 46:609–614

    CAS  Google Scholar 

  93. Herman ZS, Trzeciak H, Chrusciel TL, Kmiteciak-Kolada K, Drybanski A, Sokola A (1971) The influence of prolonged amphetamine treatment and amphetamine withdrawal on brain biogenic amine content and behaviour in the rat. Psychopharmacologia (Berl) 21:74–81

    CAS  Google Scholar 

  94. Tonge SR (1974) Noradrenaline and 5-hydroxytryptamine metabolism in six areas of rat brain during post-amphetamine depression. Psychopharmacologia (Berl) 38:181–186

    CAS  Google Scholar 

  95. Axt KJ, Molliver ME (1991) Immunocytochemical evidence for methamphetamine-induced serotonergic axon loss in the rat brain. Synapse 9:302–313

    PubMed  CAS  Google Scholar 

  96. Bakhit C, Gibb JW (1981) Methamphetamine-induced depression of tryptophan hydroxylase: recovery following acute treatment. Eur J Pharmacol 76:229–233

    PubMed  CAS  Google Scholar 

  97. Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193:153–163

    PubMed  CAS  Google Scholar 

  98. Schildkraut JJ, Watson R, Draskoczy PR, Hartmann E (1971) Amphetamine withdrawal: depression and M.H.P.G. secretion. Lancet 2:485–486

    CAS  Google Scholar 

  99. Maas JW, Landis DH (1968) In vivo studies of the metabolism of norepinephrine in the central nervous system. J Pharmacol Exp Ther 163:147–162

    PubMed  CAS  Google Scholar 

  100. Schanberg SM, Schildkraut JJ, Breese GR, Kopin IJ (1968) Metabolism of normetanephrine-H3 in rat brain: identification of conjugated 3-methoxy-4-hydrophenylglycol as the major metabolite. Biochem Pharmacol 17:247–254

    PubMed  CAS  Google Scholar 

  101. Cassens G, Kuruc A, Orsulak PJ, Schildkraut JJ (1979) Amphetamine withdrawal: effects on brain levels of MHPG-SO4 in the rat. Commun Psychopharmacol 3:217–223

    PubMed  CAS  Google Scholar 

  102. Lynch MA, Leonard BE (1978) Changes in brain γ-aminobutyric acid concentrations following acute and chronic amphetamine administration and during post amphetamine depression. Biochem Pharmacol 27:1853–1855

    PubMed  CAS  Google Scholar 

  103. Ostrander MM, Badiani A, Day HEW, Norton CS, Watson SJ, Akil H, Robinson TE (2003) Environmental context and drug history modulate amphetamine-induced c-fos mRNA expression in the basal ganglia, central extended amygdala, and associated limbic forebrain. Neuroscience 120:551–571

    PubMed  CAS  Google Scholar 

  104. Rossetti ZL, Hmaidan Y, Gessa GL (1992) Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221:227–234

    PubMed  CAS  Google Scholar 

  105. Weiss F, Imperato A, Casu MA, Mascia MS, Gessa GL (1997) Opposite effects of stress on dopamine release in the limbic system of drug-naïve and chronically amphetamine-treated rats. Eur J Pharmacol 337:219–222

    PubMed  CAS  Google Scholar 

  106. Shilling PD, Kelsoe JR, Segal DS (1997) Dopamine transporter mRNA is up-regulated in the substantia nigra and the ventral tegmental area of amphetamine-sensitized rats. Neurosci Lett 236:131–134

    PubMed  CAS  Google Scholar 

  107. Lu W, Wolf ME (1997) Expression of dopamine transporter and vesicular monoamine transporter 2 mRNAs in rat midbrain after repeated amphetamine administration. Mol Brain Res 49:137–148

    PubMed  CAS  Google Scholar 

  108. Harlan RE, Garcia MM (1998) Drugs of abuse and immediate-early genes in the forebrain. Mol Neurobiol 16:221–267

    PubMed  CAS  Google Scholar 

  109. Russig H, Pryce CR, Feldon J (2006) Amphetamine withdrawal leads to behavioral sensitization and reduced HPA axis response following amphetamine challenge. Brain Res 1084:185–195

    PubMed  CAS  Google Scholar 

  110. Wolf ME, Sun X, Mangiavacchi S, Chao SZ (2004) Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47:61–79

    PubMed  CAS  Google Scholar 

  111. Lu W, Monteggia LM, Wolf ME (1999) Withdrawal from repeated amphetamine administration reduces NMDAR1 expression in the rat substantia nigra, nucleus accumbens and medial prefrontal cortex. Eur J Neurosci 11:3167–3177

    PubMed  CAS  Google Scholar 

  112. Onn S-P, Grace AA (2000) Amphetamine withdrawal alters bistable states and cellular coupling in rat prefrontal cortex and nucleus accumbens neurons recorded in vivo. J Neurosci 20:2332–2345

    PubMed  CAS  Google Scholar 

  113. McCracken CB, Patel KM, Vrana KE, Paul DL, Roberts DCS (2005) Amphetamine withdrawal produces region-specific and time-dependent changes in connexin36 expression in rat brain. Synapse 56:39–44

    PubMed  CAS  Google Scholar 

  114. Falk MM (2000) Biosynthesis and structural composition of gap junction intercellular membrane channels. Eur J Cell Biol 79:564–574

    PubMed  CAS  Google Scholar 

  115. Murphy CA, Russig H, Pezze M-A, Ferger B, Feldon J (2003) Amphetamine withdrawal modulates FosB expression in mesolimbic dopaminergic target nuclei: effects of different schedules of administration. Neuropharmacology 44:926–939

    PubMed  CAS  Google Scholar 

  116. Sorensen JB (2005) SNARE complexes prepare for membrane fusion. Trends Neurosci 28:453–455

    PubMed  CAS  Google Scholar 

  117. Gao Y, Bezchlibnyk YB, Sun X, Wang J-F, McEwen BS, Young LT (2006) Effects of restraint stress on the expression of proteins involved in synaptic vesicle exocytosis in the hippocampus. Neuroscience 141:1139–1148

    PubMed  CAS  Google Scholar 

  118. Subramaniam S, Marcotte ER, Srivastava LK (2001) Differential changes in synaptic terminal protein expression between nucleus accumbens core and shell in the amphetamine-sensitized rat. Brain Res 901:175–183

    PubMed  CAS  Google Scholar 

  119. Barr AM, Markou A (2005) Psychostimulant withdrawal as an inducing condition in animal models of depression. Neurosci Biobehav Rev 29:675–706

    PubMed  CAS  Google Scholar 

  120. Davidson C, Gopalan R, Ahn C, Chen Q, Mannelli P, Patkar AA, Weese GD, Lee TH, Ellinwood EH (2007) Reduction in methamphetamine induced sensitization and reinstatement after combined pergolide plus ondansetron treatment during withdrawal. Eur J Pharmacol 565:113–118

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

N. K. was supported, in part, by a Grant-in-Aid for Researchers, Hyogo College of Medicine. The authors thank anonymous reviewers for their very helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Kitanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitanaka, J., Kitanaka, N. & Takemura, M. Neurochemical Consequences of Dysphoric State During Amphetamine Withdrawal in Animal Models: A Review. Neurochem Res 33, 204–219 (2008). https://doi.org/10.1007/s11064-007-9409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9409-7

Keywords

Navigation