Skip to main content

Advertisement

Log in

Modelling flash flood propagation in urban areas using a two-dimensional numerical model

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This paper reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam/dyke break wave. A two-dimensional (2-D) depth-averaged shallow-water model is used, with a refined grid of quadrilaterals and triangles for representing the urban area topography. The 2-D shallow-water equations are solved using the explicit second-order scheme that is adapted from MUSCL approach. Four applications are described to demonstrate the potential benefits and limits of 2-D modelling: (i) laboratory experimental dam-break wave in the presence of an isolated building; (ii) flash flood over a physical model of the urbanized Toce river valley in Italy; (iii) flash flood in October 1988 at the city of Nîmes (France) and (iv) dam-break flood in October 1982 at the town of Sumacárcel (Spain). Computed flow depths and velocities compare well with recorded data, although for the experimental study on dam-break wave some discrepancies are observed around buildings, where the flow is strongly 3-D in character. The numerical simulations show that the flow depths and flood wave celerity are significantly affected by the presence of buildings in comparison with the original floodplain. Further, this study confirms the importance of topography and roughness coefficient for flood propagation simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A :

Cell area

C r :

Courant number

c :

Average wave celerity

d i,j :

Distance between the midpoint of the edge (i, j) and one of the adjacent edges

E :

x-Component of flux vector (Eq. 2)

\( \bar{E}_{\text{rr}} \) :

Average relative error

\( {\mathbf{F}} \) :

Flux vector \( = \left[ {{\mathbf{E}}({\mathbf{U}}),{\mathbf{G}}({\mathbf{U}})} \right] \)

g :

Gravitational acceleration

\( {\mathbf{G}} \) :

y-Component of flux vector (Eq. 2)

H :

Flow depth

I :

Cell index

i, j :

Index for the edge between the cells i and j

K s :

Strickler coefficient for flow resistance calculations (Eq. 3a, b)

l :

Edge length

n :

Time index

N i :

Set of neighbour cells of a cell

\( {\mathbf{n}} \) :

Edge outside normal unit vector

\( {\mathbf{P}}_{{}} \) :

Transformation matrix (Eq. 7)

RMSE:

Root mean square error

\( {\mathbf{S}} \) :

Source term vector \( = \;{\mathbf{S}}_{{\mathbf{0}}} + {\mathbf{S}}_{{\mathbf{f}}} \)

\( {\mathbf{S}}_{0} \) :

Bottom slope vector

\( {\mathbf{S}}_{\text{f}} \) :

Energy losses vector

t :

Time

u :

Flow velocity in the x-direction

\( {\mathbf{U}} \) :

Vector of conservative variables = [h, hu, hv]T

\( {\mathbf{U}}^{{\;{\text{L}}}} \), \( {\mathbf{U}}^{{\;{\text{R}}}} \) :

Values of \( {\mathbf{U}} \) at the left- and right-hand sides of an edge, respectively

\( {\mathbf{U}}_{x} \), \( {\mathbf{U}}_{y} \) :

Slopes of \( {\mathbf{U}} \) over a cell in the x-and y-directions, respectively

α (x), α (y) :

x- and y-Components of the normal unit vector \( {\mathbf{n}} \)

v :

Flow velocity in the y-direction

x, y :

Cartesian co-ordinates

z b :

Bed elevation

z w :

Water surface elevation

z *w :

Average water surface elevation over a cell

Δt :

Computational time step

η, ξ :

Local coordinates

:

Partial derivative

∇.:

Divergence operator

|:

Posing that

References

  • Alcrudo F, Garcia-Navarro P (1993) A high resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. Int J Numer Methods Fluids 16(6):489–505. doi:10.1002/fld.1650160604

    Article  Google Scholar 

  • Alcrudo F, Mulet J (2004) Conclusions and recommendations from the IMPACT Project WP3: flood propagation. Available via http://www.samui.co.uk/impact-project/AnnexII_DetailedTechnicalReports/AnnexII_PartB_WP3/WP3_10Summary_v1_0.pdf

  • Alcrudo F, Mulet J (2007) Description of the Tous dam-break case study (Spain). J Hydraul Res 45(extra issue):45–57

    Google Scholar 

  • Aronica GT, Lanza LG (2005) Drainage efficiency in urban areas: a case study. Hydrol Process 19(5):1105–1119. doi:10.1002/hyp.5648

    Article  Google Scholar 

  • BCEOM CS, Metéo France (2004) Outil de prévision hydrométéorologique-Projet Espada-Ville de Nîmes. Bureau Central d’Etudes pour les Equipements d’Outre-Mer (BCEOM) Technical Report, France

  • Bradford SF, Sanders BF (2002) Finite-volume model for shallow-water flooding of arbitrary topography. J Hydraul Eng 128(3):289–298. doi:10.1061/(ASCE)0733-9429(2002)128:3(289)

    Article  Google Scholar 

  • Brown JD, Spencer T, Moeller I (2005) Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: a case study of Canvey Island, United Kingdom. Water Resour Res 43:W06402. doi:10.1029/2005WR004597

    Article  Google Scholar 

  • CADAM (Concerted Action on Dam-break Modeling) (1999) Proceedings of the 3rd CADAM Meeting. Available via http://www.hrwallingford.co.uk/projects/CADAM/CADAM/index.html

  • Caleffi V, Valiani A, Zanni A (2003) Finite volume method for simulating extreme flood events in natural channels. J Hydraul Res 41(2):167–177

    Google Scholar 

  • Calenda G, Calvani L, Mancini CP (2003) Simulation of the great flood of December 1870 in Rome. Water Marit Eng 156(4):305–312. doi:10.1680/maen.156.4.305.37926

    Article  Google Scholar 

  • Capart H, Young DL, Zech Y (2002) Voronoï imaging methods for the measurements of granular flows. Exp Fluids 32(21):121–135. doi:10.1007/s003480200013

    Article  Google Scholar 

  • CEDEX (1989) Revisión del estudio hidrológico de la crecida ocurrida en los días 20 y 21 de Octubre de 1982 en la Cuenca del Júcar. Centro de Estudios y Experimentación de Obras Públicas (CEDEX) Technical report, Spain

  • Chowdhury MD (2000) An assessment of flood forecasting in Bangladesh: the experience of the 1998 flood. Nat Hazards 22(2):139–163. doi:10.1023/A:1008151023157

    Article  Google Scholar 

  • Crowder R, van der Leer D, Burbidge J (2006) Integrated catchment & urban modelling for flood management. Available via http://www.halcrow.com/software/

  • Desbordes M, Durepaire P, Gilly JC, Masson JM, Maurin Y (1989) 3 Octobre 1988-Inondations sur Nîmes et sa Région-Manifestations, Causes et Conséquences. Lacour, Nîmes

    Google Scholar 

  • Djordjevic S, Prodanovic D, Maksimovic C, Ivetic M, Savic D (2005) SIPSON-simulation of interaction between pipe flow and surface overland flow in networks. Water Sci Technol 52(5):275–283

    Google Scholar 

  • Djordjevic S, Chen A, Leandro J, Savic D, Boonya-aroonnet S, Maksimovic C, Prodanovic D, Blanksby J, Saul A (2007) Integrated sub-surface/surface 1D/1D and 1D/2D modelling of urban flooding. In: Pasche E (ed) Special aspects of urban flood management, Proceedings Cost Session Aquaterra Conference 2007, TUHH, Hamburg, pp 197–207

  • Duclos P, Vidonne O, Beuf P, Perray P, Stoebner A (1991) Flash flood disaster—Nîmes, France. Eur J Epidemiol 7(4):365–371. doi:10.1007/BF00145001

    Article  Google Scholar 

  • Gourbesville P, Savioli J (2002) Urban runoff and flooding: interests and difficulties of the 2D approach. In: Falconer RA, Lin B, Harris EL (eds) Proceeding of Hydroinformatics 2002, Cardiff

  • Guinot V, Soares-Frazão S (2006) Flux and source term discretization in two-dimensional shallow-water models with porosity on unstructured grids. Int J Numer Methods Fluids 50(3):309–345. doi:10.1002/fld.1059

    Article  Google Scholar 

  • Haider S, Paquier A, Morel R, Champagne JY (2003) Urban flood modelling using computational fluid dynamics. Water Marit Eng 156(2):1–8

    Google Scholar 

  • Hirsch C (1988) Numerical computation of internal and external flows: fundamentals of numerical discretization. Wiley, Chicester

    Google Scholar 

  • Hsu MH, Chen SH, Chang TJ (2000) Inundation simulation for urban drainage basin with storm sewer system. J Hydrol (Amst) 234(1–2):21–37. doi:10.1016/S0022-1694(00)00237-7

    Article  Google Scholar 

  • Hubbard ME, Garcia-Navarro P (2000) Flux difference splitting and the balancing of source terms and flux gradients. J Comput Phys 165(1):89–125. doi:10.1006/jcph.2000.6603

    Article  Google Scholar 

  • Ikeda S, Sato T, Fukuzono T (2008) Towards an integrated management framework for emerging disaster risks in Japan. Nat Hazards 44(2):267–280. doi:10.1007/s11069-007-9124-3

    Article  Google Scholar 

  • IMPACT (Investigation of Extreme Flood Processes and Uncertainty) (2004) Final Technical Report. Available via http://www.samui.co.uk/impact-project/IMPACT_DetailedTechnicalReport_v2_2.pdf

  • Inoue K, Kawaike K, Hayashi H (2000) Numerical simulation models on inundation flow in urban area. J Hydrosci Hydraul Eng 18(1):119–126

    Google Scholar 

  • IPCC (2001). Climate change 2001: the scientific basis. Cambridge University Press, Cambridge. Available via http://www.grida.no/climate/ipcc_tar/wg1/index.htm

  • Ishigaki T, Nakagawa H, Baba Y (2004) Hydraulic model test and calculation of flood in urban area with underground space. In: Lee JHW, Lam KM (eds) Proceedings of the 4th international symposium on environmental hydraulics, Delft

  • Lane SN (2005) Roughness: time for a re-evaluation? Earth Surf Process Landf 30(2):251–253. doi:10.1002/esp.1208

    Article  Google Scholar 

  • Lhomme J, Bouvier C, Mignot E, Paquier A (2006) One-dimensional GIS-based model compared to two-dimensional model in urban floods simulation. Water Sci Technol 56(6–7):83–91. doi:10.2166/wst.2006.594

    Google Scholar 

  • Marco JB, Cayuela A (1994) Urban flooding: the flood-planned city concept. In: Rossi G, Harmancioglu N, Yevjecich V (eds) Coping with floods. Kluwer, Dordrecht, pp 705–721

    Google Scholar 

  • Mark O, Weesakul S, Apirumanekul C, Aroonnet SB, Djordjevic S (2004) Potential and limitations of 1-D modelling of urban flooding. J Hydrol (Amst) 299(3–4):284–299

    Google Scholar 

  • Mignot E (2005) Etude expérimentale et numérique de l’inondation d’une zone urbaine: cas des écoulements dans les carrefours en croix. Dissertation, Université Claude Bernard. Available via http://www.lyon.cemagref.fr/doc/these/mignot/indextml

  • Mignot E, Paquier A, Ishigaki T (2006a) Comparison of numerical and experimental simulations of a flood in a dense urban area. Water Sci Technol 54(6–7):65–73. doi:10.2166/wst.2006.596

    Google Scholar 

  • Mignot E, Paquier A, Haider S (2006b) Modeling floods in a dense urban area using 2D shallow water equations. J Hydrol (Amst) 327(1–2):186–199. doi:10.1016/j.jhydrol.2005.11.026

    Article  Google Scholar 

  • Mingham CG, Causon DM (1998) High-resolution finite-volume method for shallow water flows. J Hydraul Eng 124(6):605–614. doi:10.1061/(ASCE)0733-9429(1998)124:6(605)

    Article  Google Scholar 

  • Mulet J, Alcrudo F (2003) Uncertainty analysis of Tous flood propagation case study. In: CPS-Universidad de Zaragoza (ed) Proceedings of the 4rd IMPACT project workshop, Spain, 2004 (CD-Rom)

  • Nania LS (1999) Metodologia numerico-experimental para el analisis del riesgo asociado a la escorrentia pluvial en una red de calles. Dissertation, Universitat politecnica de Catalunya

  • Nania L, Gómez M, Dolz J (2004) Experimental study of the dividing flow in steep streets crossings. J Hydraul Res 42(4):406–412

    Google Scholar 

  • Neary VS, Sotiropoulos F, Odgaard AJ (1999) Three-dimensional numerical model of lateral-intake inflows. J Hydraul Eng 125(2):126–140. doi:10.1061/(ASCE)0733-9429(1999)125:2(126)

    Article  Google Scholar 

  • Nirupama N, Simonovic SP (2007) Increase of flood risk due to urbanisation: a Canadian example. Nat Hazards 40(1):25–41. doi:10.1007/s11069-006-0003-0

    Article  Google Scholar 

  • Oberle P, Merkel U (2007) Urban flood management-simulation tools for decision makers. In: Ashley R (ed) Advances in Urban Flood Management. Taylor and Francis, London, pp 91–112

    Google Scholar 

  • Paquier A (1995) Modélisation et simulation de la propagation de l’onde de rupture de barrage. Dissertation, Université Jean Monnet

  • Paquier A (1998) 1-D and 2-D models for simulating dam-break waves and natural floods. In: Morris M, Galland JC, Balabanis P (eds) Proceedings of CADAM (Concerted action on dam-break modelling) project, Wallingford, 1998

  • Paquier A, Tanguy JM, Haider S, Zhang B (2003) Estimation des niveaux d’inondation pour une crue éclair en milieu urbain: comparaison de deux modèles hydrodynamiques sur la crue de Nîmes d’octobre 1988. Rev Sci Eau 16(1):79–102

    Google Scholar 

  • Perrin C, Michel C, Andreassian V (2003) Improvement of a parsimonious model for stream flow simulation. J Hydrol (Amst) 279(1):1–4. doi:10.1016/S0022-1694(03)00088-X

    Article  Google Scholar 

  • Soares-Frazão S, Guinot V (2007) An eigenvector-based linear reconstruction scheme for the shallow-water equations on two-dimensional unstructured meshes. Int J Numer Methods Fluids 53(1):23–55. doi:10.1002/fld.1242

    Article  Google Scholar 

  • Soares-Frazão S, Zech Y (2007) Experimental study of dam-break flow against an isolated obstacle. J Hydraul Res 45(extra issue):27–36

    Google Scholar 

  • Testa G, Zuccalà D, Alcrudo F, Mulet J, Soares-Frazão S (2007) Flash flood flow experiment in a simplified urban district. J Hydraul Res 45(extra issue):37–44

    Google Scholar 

  • Valiani A, Caleffi V, Zanni A (2002) Case study: malpasset dam-break simulation using a 2D finite-volume method. J Hydraul Eng 128(5):460–472. doi:10.1061/(ASCE)0733-9429(2002)128:5(460)

    Article  Google Scholar 

  • VanLeer B (1979) Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. J Comput Phys 32:101–136. doi:10.1016/0021-9991(79)90145-1

    Article  Google Scholar 

  • Yoon TH, Kang SK (2004) Finite volume model for two-dimensional shallow water flows on unstructured grids. J Hydraul Eng 130(7):678–688. doi:10.1061/(ASCE)0733-9429(2004)130:7(678)

    Article  Google Scholar 

  • Yu D, Lane SN (2006) Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: mesh resolution effects. Hydrol Process 20(7):1541–1565. doi:10.1002/hyp.5935

    Article  Google Scholar 

  • Zerger A, Wealands S (2004) Beyond modelling: linking models with GIS for flood risk management. Nat Hazards 33(2):191–208. doi:10.1023/B:NHAZ.0000037040.72866.92

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support offered by the French National Research Agency (ANR) for Research Contract ANR-05-PGCU-004, “RIVES.” Dr. Sandra Soares-Frazão and Professor Yves Zech (Université Catholique de Louvain), Guido Testa and David Zuccalà (CESI, Milan), Professor Francisco Alcrudo and Jonatan Mulet (Universidad de Zaragoza) are gratefully acknowledged for the work concerning the availability of experimental and field data. Finally, the authors would like to thank the guest editor (G. Iovine) and three anonymous reviewers for their detailed review and improvement of the English language of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal El Kadi Abderrezzak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Kadi Abderrezzak, K., Paquier, A. & Mignot, E. Modelling flash flood propagation in urban areas using a two-dimensional numerical model. Nat Hazards 50, 433–460 (2009). https://doi.org/10.1007/s11069-008-9300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-008-9300-0

Keywords

Navigation