Skip to main content

Advertisement

Log in

Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In this paper, ModelBuilderTM in ArcGIS (ESRI) has been applied to landslide-susceptibility analysis, mapping and validation. The models (scripts), available for direct downloading as an ArcGIS tool, allow landslide susceptibility to be computed in a given region, providing a landslide-susceptibility map, with the GIS matrix method, and ensuring a quality validation. The paper details the steps needed for the model-building process, enabling users to build their own models and to become more familiar with the tool. The susceptibility model leads the user first through a Digital Elevation Model (DEM), depicting the morphological and morphometric features of the study area, and then through a Digital Terrain Model (DTM), useful as a source of landslide-determinant factors, such as slope elevation, slope angle and slope aspect. In addition, another determinant factor is the lithological unit, independent of the DEM. Once the determinant landslide factors are reclassified and in a vectorial format, all the combinations between the classes of these factors are determined using the geoprocessing abilities of ArcGIS. The next step for the development of the landslide-susceptibility model consists of identifying the areas affected by a given surface of rupture (i.e. source area) in every combination of the determinant-factor classes. This step leads to the landslide matrix based on a previously georeferenced landslide database of the region, in which the slopes are distinguished into two simple classes: with or without landslides. In the last stage, to build a landslide-susceptibility model, the user computes the percentages of area affected by landslides in every combination of determinant factors. In the resulting landslide-susceptibility map a progressive zonation of areas or slopes increasingly prone to landslides is performed. A model for the validation of the resulting landslide-susceptibility map is also presented, based on the determination of the degree of fit, which is calculated from the cross tabulation between a set of landslides (not included in the susceptibility analysis) and the corresponding susceptibility map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agterberg FP, Bonham-Carter GF, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. In: Agterberg FP, Bonham-Carter GF (eds) Statistical applications in the earth sciences. Geol Surv Can 89(9):171–183

  • Agterberg FP, Bonham-Carter GF, Cheng Q, Wright DF (1993) Weights of evidence modelling and weighted logistic regression for mineral potential mapping. In: Davis JC, Herzfeld UC (eds) Computer in geology, 25 years of progress. Oxford University Press, Oxford, pp 13–32

    Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44. doi:10.1007/s100640050066

    Article  Google Scholar 

  • ArcGIS (2004) ESRI® ArcMapTM 9.0 License Type: ArcInfo. ESRI Inc.

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic Information Systems for Geoscientists: modelling with GIS. Pergamon, Ottawa

    Google Scholar 

  • Bonham-Carter GF, Agterberg FP, Wright DF (1988) Integration of geological datasets for gold exploration in Nova Scotia. Photogramm Eng Remote Sens 54:1585–1592

    Google Scholar 

  • Brabb EE, Pampeyan EH, Bonilla MG (1972) Landslide susceptibility in San Mateo Country, California. U.S. Geological Survey, Field Studies Map MF-360, scale 1:62500

  • Canuti P, Casagli N (1996) Considerazioni sulla valutazione del rischio dei frana. Estratto da “Fenomeni Franosi e Centri Abitati”. Atti del Convegno di Bologna del 27 Maggio 1994. CNR-GNDCI-Linea 2 “Previsione e Prevenzione di Eventi Granosi a Grande Rischio”. Pubblicazione no. 846

  • Carrara A (1988) Multivariate models for landslide hazard evaluation. A “black box” approach. Workshop on natural disasters in European Mediterranean Countries, Perugia, pp 205–224

    Google Scholar 

  • Carrara A, Merenda L (1974) Metodologia per un censimento deggli eventi franoso in Calabria. Geol Aplicata Idrogeologica 9:237–255

    Google Scholar 

  • Carrara A, Pugliese-Carratelli E, Merenda L (1977) Computer-based data bank and statistical analysis of slope instability phenomena. Zeitschrift für Geomorphologie N.F 21:187–222

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445. doi:10.1002/esp.3290160505

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard risk. ITC J 1992:172–183

    Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical Information Systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, pp 135–175

    Google Scholar 

  • Chacón J, Irigaray C, El Hamdouni R, Fernández T (1996) Consideraciones sobre los riesgos derivados de los movimientos del terreno, su variada naturaleza y las dificultades de evaluación. In: Chacón J, Irigaray C (eds) 6th Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio; Riesgos Naturales, Ordenación del Territorio y Medio Ambiente, Granada, pp 407–418

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2002) Susceptibilidad a los movimientos de ladera en el sector central de la Cordillera Bética. In: Ayala-Carcedo FJ, Corominas J (eds) Mapas de Susceptibilidad a los Movimientos de Ladera con Técnicas SIG. Fundamentos y Aplicaciones en España. IGME, Madrid, pp 83–96

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and Geographical Information Systems (GIS). Bull Eng Geol Environ 65:341–411. doi:10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472. doi:10.1023/B:NHAZ.0000007172.62651.2b

    Article  Google Scholar 

  • Chung CF, Fabbri AG, Van Westen CJ (1995) Multivariate regression analysis for landslide hazards zonation. In: Carrara A, Guzzetti F (eds) Geographical Information System in assessing natural hazards. Kluwer Academic Publishers, Dordrecht, pp 107–134

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364. doi:10.1016/S0169-555X(02)00079-X

    Article  Google Scholar 

  • Cross M (1998) Landslide susceptibility mapping using the Matrix Assessment approach: a Derbyshire case study. In: Maund JG, Eddlestonb M (eds) Geohazards in engineering geology. The Geological Society, vol 15. Engineering Geology Special Publications, London, pp 247–261

    Google Scholar 

  • Crozier MJ (1986) Landslides: causes, consequences and environment. Croom Helm Pub., Surrey Hills, London

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Academic Press, Washington, DC, Sp-Rep 247:35–76

  • Davis JC, Chung C, Ohlmacher G (2006) Two models for evaluating landslide hazards. Comput Geosci 32:1120–1127. doi:10.1016/j.cageo.2006.02.006

    Article  Google Scholar 

  • DeGraff JV, Romesburg HC (1980) Regional landslide-susceptibility assessment for wildland management: a matrix approach. In: Coates DR, Vitek JD (eds) Thresholds in geomorphology, vol 19. Alien & Unwin, Boston, pp 401–414

    Google Scholar 

  • El Hamdouni R (2001) Estudio de Movimientos de Ladera en la Cuenca del Río Ízbor mediante un SIG: Contribución al Conocimiento de la Relación entre Tectónica Activa e Inestabilidad de Vertientes. Unpublished PhD Thesis. Department of Civil Engineering. University of Granada, Spain

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343. doi:10.1016/j.geomorph.2004.09.025

    Article  Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272. doi:10.1139/t94-031

    Article  Google Scholar 

  • Fernández T (2001) Cartografía, Análisis y Modelado de la Susceptibilidad a los Movimientos de Ladera en Macizos Rocosos mediante SIG: Aplicación a Diversos Sectores del Sur de la Provincia de Granada. Unpublished PhD Thesis. Department of Civil Engineering. University of Granada, Spain

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area (Granada, Spain). Nat Hazards 30:297–308. doi:10.1023/B:NHAZ.0000007092.51910.3f

    Article  Google Scholar 

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2008) Correlation between natural slope angle and rock mass strength rating in the Betic Cordillera, Granada, Spain. Bull Eng Geol Environ 67:153–164. doi:10.1007/s10064-007-0118-x

    Article  Google Scholar 

  • Glade T, Anderson MG, Crozier MJ (eds) (2005) Landslide risk assessment. Wiley, Chichester

    Google Scholar 

  • Gómez-Pugnaire MT, Galindo-Zaldívar J, Rubatto D, González-Lodeiro F, López V, Jabaloy A (2004) A reinterpretation of the Nevado-Filábride and Alpujárride Complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Miner Petrog 84:303–322

    Google Scholar 

  • Goodchild MF (1986) Spatial autocorrelation, CATMOG 47. Geo Books, Norwich

    Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P (1996) The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geosci 2:531–555

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Landslide hazard assessment in the Staffora basin, northern Italian Apennines. Geomorphology 72:272–299

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Hammond CJ, Prellwitz RW, Miller SM (1992) Landslides hazard assessment using Monte Carlo simulation. In: Bell DH (ed) Proceedings of 6th international symposium on landslides, Christchurch, New Zealand, Balkema, 2, pp 251–294

  • Hansen MJ (1984) Landslide hazard analysis. In: Brundsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 523–602

    Google Scholar 

  • ICA (Instituto de cartografía de Andalucía) (1999) Mapa Digital de Andalucía 1:10.000, hoja 1042. Junta de Andalucía, Seville, 1 digital map

  • Irigaray C (1995) Movimientos de Ladera: Inventario, Análisis y Cartografía de la Susceptibilidad Mediante un Sistema de Información Geográfica. Aplicación a las Zonas de Colmenar (Málaga), Rute (Córdoba) y Montefrío (Granada). Unpublished PhD Thesis. Department of Civil Engineering. University of Granada, Spain

  • Irigaray C, Fernández T, Chacón J (1996) Metodología de análisis de factores determinantes de movimientos de ladera mediante un SIG. Aplicación al Sector de Rute (Córdoba, España). In: Chacón J, Irigaray C (eds) 6th Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio; Riesgos Naturales, Ordenación del Territorio y Medio Ambiente, Granada, pp 55–74

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (1999) Verification of landslide susceptibility mapping. A case study. Earth Surf Process Landf 24:537–544

    Article  Google Scholar 

  • Irigaray C, Lamas F, El Hamdouni R, Fernández T, Chacón J (2000) The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21:65–81

    Article  Google Scholar 

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41:61–79

    Article  Google Scholar 

  • Iovine G, Di Gregorio S, Lupiano V (2003a) Assessing debris-flow susceptibility through cellular automata modelling: an example from the May 1998 disaster at Pizzo d’Alvano (Campania, southern Italy). In: Rickenmann D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction and assessment. Proceedings of 3rd DFHM international conference, Davos, Switzerland, September 2003, vol 1. Millpress Science Publishers, Rotterdam, pp 623–634

  • Iovine G, Di Gregorio S, Lupiano V (2003b) Debris-flow susceptibility assessment through cellular automata modeling: an example from 15–16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Nat Hazards Earth Syst Sci 3:457–468

    Article  Google Scholar 

  • Jiménez-Perálvarez J, Irigaray C, El Hamdouni R, Fernández T, Chacón J (2005) Rasgos geomorfológicos y movimientos de ladera en la cuenca alta del río Guadalfeo, sector Cádiar-Órgiva (Granada). In: Alonso E, Corominas J (eds) VI Simposio Nacional sobre Taludes y Laderas Inestables. Valencia, Spain, pp 891–902

    Google Scholar 

  • Kienholz H, Bichsel M, Grunder M, Mool P (1983) Kathmandu-Kakani area, Nepal: mountain hazards and slope stability map. Mountain hazards mapping project map 4 (scale 1:10.000). United Nations University, Tokyo

    Google Scholar 

  • Maharaj RJ (1993) Landslide processes and landslide susceptibility analysis from an upland watershed a case study from St. Andrew, Jamaica, West Indies. Eng Geol 34:53–79

    Article  Google Scholar 

  • McCoy J (2004) Geoprocessing in ArcGIS. ESRI Press, Redlands

    Google Scholar 

  • Mulder HFHM, Van Asch, TWJ (1988) A stochastical approach to landslide hazard determination in a forested area. In: Bonnard C (ed) Proceedings of 5th international symposium on landslides, Laussane, Balkema 2, pp 1207–1210

  • Okimura T, Kawatani T (1986) Mapping of the potential surface-failure sites on Granite Mountain slopes. In: Gardiner J (ed) International geomorphology, part 1. Wiley, New York, pp 121–138

    Google Scholar 

  • Ortega M, Nieto F, Rodríguez J, López AC (1985) Mineralogía y estratigrafía de los sedimentos neógenos del corredor de la Alpujarra (Cordillera Bética, España). Boletín de la Sociedad Española de Mineralogía 8:307–318

    Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. In: Proceedings of 8th congress of the international association of engineering geology, Vancouver, British Columbia, Canada, pp 1157–1165

  • Poli S, Sterlacchini S (2007) Landslide representation strategies in susceptibility studies using weights-of-evidence modeling technique. Nat Resour Res 16:121–134

    Article  Google Scholar 

  • Remondo J, González A, Díaz de Terán JR, Cendrero A, Fabbri A, Cheng CF (2003) Validation of landslide susceptibility maps: examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Rodríguez-Ortiz JM, Hinojosa JA, Prieto C (1978) Regional studies on mass movements in Spain. In: Third IAEG international congress. pp 267–277

  • SIGMA (Sistema de Información Geológico-Minero de Andalucía) (2002) Mapa Geológico Digital MAGNA 1:50000, hoja 1042. Junta de Andalucía, Seville, 1 digital map

  • Soeters R, Van Westen JC (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Academic Press, Washington, DC, Sp-Rep 247:129–177

  • Stevenson PC (1997) And empirical method for the evaluation of relative landslide risk. Bull Int Assoc Eng Geol 16:69–72

    Article  Google Scholar 

  • UNESCO (1976) Guide pour la preparation des cartes géotechniques. UNESCO/IAEG, Paris

    Google Scholar 

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. PhD Dissertation, Technical University Delft, ITC-Publication Number 15, ITC, Enschede, The Netherlands

  • Van Westen CJ (1994) GIS in landslides hazard zonation: a review with examples from the Andes of Colombia. In: Price MF, Heywood DJ (eds) Mountain environments and geographic information systems. Taylor and Francis, London, pp 135–167

    Google Scholar 

  • Van Westen CJ (2000) The modelling of landslide hazards using GIS. Surv Geophys 21:241–255

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:404–414

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movements types and processes, In: Schuster RL, Kizek RJ (eds) Landslides: analysis and control. National Academy of Sciences, Washington, DC, Special report 176(2):11–33

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Commission on landslides of the IAEG, UNESCO, Paris. Natural Hazards 3

Download references

Acknowledgements

Work supported by CGL2005-03332 and CGL2008-04854 Projects. RNM121 Research Group and the Andalusian Excellence Project P06-RNM-02125.We would like to thank five anonymous referees for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Irigaray.

Appendix: Execution of the models and files generated

Appendix: Execution of the models and files generated

1.1 Downloading the models

The models are available for free downloading as an ArcGIS tool (susceptibility.tbx) on the follow link: “http://www.ugr.es/local/ren03366/susc_model.rar”. For availability on this link, the tool has been compressed by mean of standard compression software: WinRAR, version 3.62.00. It is strongly recommended that this software be used to decompress the tool.

The tool box “susceptibility.tbx”, contains two models: the “susceptibility_model” to assess susceptibility, and the “validation_model” to validate the landslide-susceptibility map. The models are also available in Python, Jscript and VBscript programming languages. The tool susceptibility.tbx has been tested with ArcGIS 9.0, 9.1 and 9.2, running on a WindowsXP operating system. The other tips for using the tool are on the readme_help.pdf file.

1.2 Executing (running) the models

The user begins to execute the models by double-clicking on the icons, after introducing the input data and establishing the general parameters (see also the “help” section in the model by right clicking and then clicking on help). The landslide-susceptibility model (susceptibility_model) generates one output datum: the landslide-susceptibility map (suscep_matrix.shp), from three input data: DEM, lithological complexes and landslide inventory. The validation model (validation_model) generates one output datum (the table “adjust.dbf”), from two input data: the landslide-susceptibility map previously obtained (suscep_matrix.shp), and a landslide inventory, which may also be different from the one used in the susceptibility analysis. The model is easily edited (right click and edit the model) and adaptable to the user’s needs (i.e. adding more determinant factors). In this case, the way of executing the model is, therefore, to edit the model and execute from the “edit” window, in order to appreciate the steps in which the model shows the user’s modifications. The most common changes introduced in the model refer to determinant factors such as vegetation maps, rainfall information, land-use maps, etc., which may be added by the “intersect” tool. Also, different reclassifications may be necessary for particular treatments of some determinant factors; for that purpose simply double click the tool “reclassify” and select some of the available methods (natural breaks, standard deviation, equal intervals or a user-defined method). The most common reclassification is the drawing of the altitude map, since altitude can vary markedly from one area to another, and therefore this possibility is facilitated from the input interface. For the rest of the reclassifications, it is necessary to edit the model.

1.3 Determinant factors derived from the DEM

The elevation map (“altitude_7sd.shp”) shows a simple reclassification into 7 classes of DEM data, which is a continuous raster surface, converted into a discreet surface (“altitude_7”) and finally into a vectorial format (“altitude_7s.shp”). The DEM reclassification is an input datum. This is generalized by classes (“altitude_7sd.shp”) in order to simplify the map attributes. The slope-angle layer (“slope_5sd.shp”) shows the distribution of slope angles calculated directly by ArcGIS from the DEM. It uses an algorithm of a partial derivate of X (difference of elevation and distance in direction E–W) and the partial derivate of Y (difference of elevation and distance in direction N–S) in a network of 3 × 3 m around each DEM cell (“slope (2)”). Once calculated, the derivates are combined to determine the slope angles which are reclassified (“slope_5”), transformed into a vectorial format (“slope_5s.shp”) and generalized. (“slope_5sd.shp”). The slope aspect layer (“aspect_5sd.shp”), accounting for the distribution of this factor, is calculated as the slope angle, from the X and Y partial derivates in a 3 × 3 m network around each of the DEM cells (“aspect (2)”). This continuous map of aspect is reclassified (“aspect_5”), transformed into vectorial (“aspect_5s.shp”) and generalized (“aspect_5sd.shp”).

1.4 Landslide-susceptibility map

Using ArcGIS 9.0 and 9.1, in the landslide-susceptibility map (suscep_matrix.shp) the “crossed_1” column corresponds to the area not affected by the source areas of the landslides for a given combination of factors. The “crossed_2” column shows the area affected by the source areas of the landslides for this combination of classes of determinant factors, and the “crossed_3” column represents the total area of the combination of factors considered. Finally, in the “crossed_po” column the percentage of area affected by the source areas of the landslides in that factor combination is preserved, this being the corresponding susceptibility value.

Using ArcGIS 9.2, in the landslide-susceptibility map (suscep_matrix.shp) the “crossed_VA” column is the area not affected by the source areas of the landslides, the “crossed_1” column shows the area affected by the source areas of the landslides, the “crossed_2” column represents the total area of the combination of factors considered and the “crossed_po” column is the percentage of area affected by the source areas of the landslides.

1.5 Validation of the susceptibility map

Using ArcGIS 9.2, in the landslide-susceptibility validation (adjust.dbf) the “adjust” column corresponds to the degree of fit at each susceptibility level. This column (adjust) corresponds to the column “validati_6” if the user is working with either ArcGIS 9.0 or 9.1.

The susceptibility levels are shown in ascending order, so that “OID = 0” in table “adjust.dbf” corresponds to the lowest susceptibility level, in this case very low susceptibility. In ArcGIS 9.0, the model must be executed from the edition window. For the completion of the model, the last tool “calculate field (5)” must be executed individually after previously executing the model, since the last tool does not recognize the new columns that are added until these are generated. This step need not be taken with ArcGIS 9.2, where the model is executed directly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Perálvarez, J.D., Irigaray, C., El Hamdouni, R. et al. Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS. Nat Hazards 50, 571–590 (2009). https://doi.org/10.1007/s11069-008-9305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-008-9305-8

Keywords

Navigation