Skip to main content

Advertisement

Log in

Physical vulnerability assessment for alpine hazards: state of the art and future needs

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Mountain hazards such as landslides, floods and avalanches pose a serious threat to human lives and development and can cause considerable damage to lifelines, critical infrastructure, agricultural lands, housing, public and private infrastructure and assets. The assessment of the vulnerability of the built environment to these hazards is a topic that is growing in importance due to climate change impacts. A proper understanding of vulnerability will lead to more effective risk assessment, emergency management and to the development of mitigation and preparedness activities all of which are designed to reduce the loss of life and economic costs. In this study, we are reviewing existing methods for vulnerability assessment related to mountain hazards. By analysing the existing approaches, we identify difficulties in their implementation (data availability, time consumption) and differences between them regarding their scale, the consideration of the hazardous phenomenon and its properties, the consideration of important vulnerability indicators and the use of technology such as GIS and remote sensing. Finally, based on these observations, we identify the future needs in the field of vulnerability assessment that include the user-friendliness of the method, the selection of all the relevant indicators, the transferability of the method, the inclusion of information concerning the hazard itself, the use of technology (GIS) and the provision of products such as vulnerability maps and the consideration of the temporal pattern of vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbas SO, Blahut J, Sterlacchini S (2009) Critical assessment of existing physical vulnerability estimation approaches for debris flows. In: Malet JP, Remaitre A, Bogaard T (eds) Proceedings of landslide processes: from geomorphologic mapping to dynamic modelling. Strasburg, France, 6–7 February 2009, pp 229–233

  • Alexander D (2005) Vulnerability to landslides. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, UK, pp 175–198

    Google Scholar 

  • Barbolini M, Cappabianca F, Sailer R (2004) Empirical estimate of vulnerability relations for use in snow avalanche risk assessment. In: Brebbia CA (ed) Risk analysis, IV. WIT Press, Southampton, pp 533–542

    Google Scholar 

  • Barredo J (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42:125–148

    Article  Google Scholar 

  • Bell R, Glade T (2004) Quantitative risk analysis for landslides - Examples from Bildudalur, NW-Iceland. Nat Hazards Earth Syst Sci 4:117–131

    Article  Google Scholar 

  • Bertrand D, Naaim M, Brun M (2010) Physical vulnerability of reinforced concrete buildings impacted by snow avalanches. Nat Hazards Earth Syst Sci 10:1531–1545

    Article  Google Scholar 

  • BFF, SLF (Bundesamt für Forstwesen, Eidgenössisches Institut für Schnee- und Lawinenforschung) (1984) Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen Tätigkeiten. Bundesamt für Forstwesen, Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos und Bern

  • Birkmann J (2006) Indicators and criteria for measuring vulnerability: Theoretical bases and requirements. In: Birkmann J (ed) Measuring Vulnerability to Natural Hazards. United Nations University Press, pp 55–77

  • Blaikie P, Cannon T, Davis I, Wisner B (1994) At Risk, Natural Hazards, People’s Vulnerability and Disasters. Routledge Press, London, p 284

    Google Scholar 

  • Blöchl A, Braun B (2005) Economic assessment of landslide risks in the Schwabian Alb, Germany -research framework and first results of homeowners and experts surveys. Nat Hazards Earth Syst Sci 5:389–396

    Article  Google Scholar 

  • Bohle HG, Glade T (2007) Vulnerabilitätskonzepte in Sozial- und Naturwissenschaften. In: Felgentreff C, Glade T (eds) Naturrisiken und Sozialkatastrophen, pp 99–119

  • Brooks N (2003) Vulnerability risk and adaptation: a conceptual framework, Tyndall Centre for Climate Change Research. Working paper 38:1–16

  • Bründl, M. (Editor), 2009. Risikokonzept für Naturgefahren. Einzelprojekt A1.1: Leitfaden. Nationale Plattform Naturgefahren PLANAT, Bern, p 420. http://www.planat.ch/ressources/planat_product_de_1110.pdf)

  • Bründl M, Romang HE, Bischof N, Rheinberger CM (2009) The risk concept and its application in natural hazard risk management in Switzerland. Nat Hazards Earth Syst Sci 9(3):801–813

    Article  Google Scholar 

  • Bründl M, Bartelt P, Schweizer J, Keiler M, Glade T (2010) Snow avalanche risk analysis—review and future challenges. In: Alcantara-Ayla I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 49–61

    Google Scholar 

  • Büchele B, Kreibich H, Kron A, Thieken A, Ihringer J, Oberle P, Merz B, Nestmann F (2006) Flood-risk mapping: contributions towards and enhanced assessment of extreme events and associated risks. Nat Hazards Earth Syst Sci 6:485–503

    Article  Google Scholar 

  • BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (1999a) Risikoanalyse bei gravitative Naturgefahren: Methode, Umweltmaterialen No 107/1 Naturgefahren, p 115

  • BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (1999b) Risikoanalyse bei gravitative Naturgefahren: Fallbeispiele und Daten, Umweltmaterialen No 107/2 Naturgefahren, p 129

  • BUWAL, BWW, BRP (Bundesamt für Umwelt, Wald und Landschaft, Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung) (1997) Berücksichtigung der Massenbewegungsgefahren bei raumwirksamen Tätigkeiten. Bundesamt für Umwelt, Wald und Landschaft, Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bern und Biel

  • BWW, BRP, BUWAL (Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bundesamt für Umwelt, Wald und Landschaft) (1997) Berücksichtigung der Hochwassergefahren bei raumwirksamen Tätigkeiten. Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bundesamt für Umwelt, Wald und Landschaft, Biel und Bern

  • Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically based vulnerability relations integrated in a GIS platform. Cold Reg Sci Technol 54:193–205

    Article  Google Scholar 

  • Cardinali M, Reinbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2:57–72

    Article  Google Scholar 

  • CENAT (2004) Monte Verità Workshop 2004, Coping with Risks due to Natural Hazards in the 21st Century, 28 November 2004–03 December 2004, GLOSSARY, http://www.cenat.ch/index.php?navID=824&userhash=41529&I=e

  • Corominas J, Copons R, Moya J, Vilaplana JM, Altimir J, Amigo J (2005) Quantitative assessment of the residual risk in a rockfall protected area. Landslides 2:343–357

    Article  Google Scholar 

  • Crozier MJ (1999) Slope instability: landslides. In: Alexander D, Fairbridge RW (eds) Encyclopaedia of environmental science. Dordrecht, pp 561–562

  • De Lotto P, Testa G (2000) Risk assessment: a simplified approach of flood damage evaluation with the use of GIS. Interpraevent 2:281–291

    Google Scholar 

  • Deutsche Rück (1999) Das Pfingsthochwasser im Mai 1999. Deutsche Rückversicherung AG

  • Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazards Earth Syst Sci 7:283–288

    Article  Google Scholar 

  • Dutta D, Herath S, Musiake K (2003) A mathematical model for flood loss estimation. J Hydrol 277:24–49

    Article  Google Scholar 

  • ER NZI (2004) Economic impacts on New Zealand of climate change-related extreme events. Focus on fresh-water floods. New Zealand Climate Change Office, New Zealand

    Google Scholar 

  • Fell R, Hartford D (1997) Landslide risk management. In: Dikau R, Brunsden D, Schrott L, Ibsen M-L (eds) Landslide recognition. Identification, movement and causes. Wiley, Chichester p. 251

    Google Scholar 

  • FEMA (2007) Multi-hazard loss estimation methodology: flood model. HAZUS-MH MR3. Department of Homeland Security, Federal Emergency Management Agency, USA

    Google Scholar 

  • Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria—paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9:337–352

    Article  Google Scholar 

  • Fuchs S, Heiss K, Hübl J (2007) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7:495–506

    Article  Google Scholar 

  • Galli M, Guzzetti F (2007) Landslide vulnerability criteria: a case study from Umbria, Central Italy. Environ Manage 40:649–664

    Article  Google Scholar 

  • Glade T (2003) Vulnerability assessment in landslide risk analysis. Die Erde 134:123–146

    Google Scholar 

  • Glade T, Crozier M (2005) The nature of landslide hazard impact. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, pp 43–74

    Google Scholar 

  • Greenaway MA, Smith DI (1983) ANUFLOOD field guide. Centre of Resource and Environmental Studies, Australian National University, Canberra

  • Grünthal G, Thieken A, Schwarz J, Radtke K, Smolka A, Merz B (2006) Comparative risk assessment for the city of Cologne—storms, floods, earthquakes. Nat Hazards 38:21–44

    Article  Google Scholar 

  • Hollenstein K (2005) Reconsidering the risk assessment concept: standardizing the impact description as a building block for vulnerability assessment. Nat Hazards Earth Syst Sci 5:301–307

    Article  Google Scholar 

  • Hollenstein K, Bieri O, Stückelberger J (2002) Modellierung der Vulnerabilität von Schadobjekten gegenüber Naturgefahrenprozessen. ETH Zürich, Forstliches Ingenieurwesen

    Google Scholar 

  • Höller P (2007) Avalanche hazards and mitigation in Austria: a review. Nat Hazards 43:81–101

    Article  Google Scholar 

  • Holub M, Fuchs S (2009) Mitigating mountain hazards in Austria—legislation, risk transfer, and awareness building. Nat Hazard Earth Syst Sci 9:523–537

    Article  Google Scholar 

  • Holub M, Hübl J (2008) Local protection against mountain hazards—state of the art and future needs. Nat Hazard Earth Syst Sci 8:81–99

    Article  Google Scholar 

  • Hooijer A, Li Y, Kerssens P, Van der Vat M, Zhang J (2001) Risk assessment as a basis for sustainable flood management. 29th Annual congress of the international-association-of-hydraulic-engineering-and-research (IAHR), Bejing, China, pp 442–449

  • Hufschmidt G, Crozier M, Glade T (2005) Evolution of natural risk: research framework and perspectives. Nat Hazard Earth Syst Sci 5:375–387

    Article  Google Scholar 

  • IUGS (1997) Quantitative risk assessment for slopes and landslides-the state of the art. In: Cruden DM, Fell R (eds) Landslide risk assessment. Roterdam, Balkema, pp 3–12

    Google Scholar 

  • Iverson MR (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Jonasson K, Sigurosson S, Arnalds P (1999) Estimation of avalanche risk. Vedurstofu Islands n. R99001-ur01,  p 44

  • Kang JL, Su MD, Chang LF (2005) Loss functions and framework for regional flood damage estimation in residential area. J Mar Sci Technol 13:193–199

    Google Scholar 

  • Kaynia AM, Papathoma-Köhle M, Neuhäuser B, Ratzinger K, Wenzel H, Medina-Cetina Z (2008) Probabilistic assessment of vulnerability to landslide: application to the village of Lichtenstein, Baden-Württemberg, Germany. Eng Geol 101:33–48

    Article  Google Scholar 

  • Keiler M (2004) Development of the damage potential resulting from the avalanche risk in the period 1950–2000, case study, Galtür. Nat Hazard Earth Syst Sci 4:249–256

    Article  Google Scholar 

  • Keiler M, Sailer R, Jörg P, Weber C, Fuchs S, Zischg A, Sauermoser S (2006) Avalanche risk assessment—a multi-temporal approach, results from Galtür, Austria. Nat Hazard Earth Syst Sci 6:637–651

    Article  Google Scholar 

  • Keiler M, Knight J, Harrison S (2010) Climate change and geomorphological hazards in the eastern European Alps. Philos Trans R Soc A 368:2461–2479

    Article  Google Scholar 

  • Kelman I, Spence R (2004) An overview of flood actions on buildings. Eng Geol 73:297–309

    Article  Google Scholar 

  • Keylock CJ, Barbolini M (2001) Snow avalanche impact pressure-vulnerability relations for use in risk assessment. Can Geotech J 38:227–238

    Article  Google Scholar 

  • Leone F, Aste JP, Leroi E (1996) Vulnerability assessment of elements exposed to mass-movement: working toward a better risk perception. In: Senneset K (ed) Landslides. Balkema, Rotterdam, pp 263–270

    Google Scholar 

  • Liu X, Lei J (2003) A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology 52:181–191

    Google Scholar 

  • Macquarie O, Thiery Y, Malet JP, Weber C, Puissant A, Wania A (2004) Current practices and assessment tools of landslide vulnerability in mountainous basins-identification of exposed elements with a semi-automatic procedure. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilisation. Taylor and Francis Group, London, pp 171–176

    Google Scholar 

  • Mavrouli O, Corominas J (2008) Structural response and vulnerability assessment of buildings in front of the rock fall impact, Geophysical Research Abstract 10

  • McClung D, Schaerer P (1993) The avalanche handbook. The Mountaineers, Seattle, p 271

    Google Scholar 

  • Mejia-Navarro M, Wohl LEE, Oaks SD (1994) Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado. Geomorphology 10:331–354

    Article  Google Scholar 

  • Merz B, Kreibich H, Thieken A, Schmidtke R (2004) Estimation uncertainty of direct monetary flood damage to buildings. Nat Hazards Earth Syst Sci 4:153–163

    Article  Google Scholar 

  • Merz B, Kreibich H, Schwarze R, Thieken A (2010) Review article “Assessment of economic flood damage”. Nat Hazards Earth Syst Sci 10:1697–1724

    Article  Google Scholar 

  • Messner F, Meyer V (2005) Flood damage, vulnerability and risk perception—challenges for flood damage research. UFZ Discussion Paper. Umweltforschungszentrum Leipzig, Halle

    Google Scholar 

  • Meyer V, Scheuer S, Haase D (2009) A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat Hazards 48:17–39

    Article  Google Scholar 

  • Michael-Leiba, Baynes F, Scott G, Granger K (2003) Regional landslide risk to the cairns community. Nat Hazards 30:233–249

    Article  Google Scholar 

  • Middelmann-Fernandes M (2010) Flood damage estimation beyond stage-damage functions: an Australian example. J Flood Risk Manage 3:88–96

    Article  Google Scholar 

  • Papathoma-Köhle M, Neuhäuser B, Ratzinger K, Wenzel H, Dominey-Howes D (2007) Elements at risk as a framework for assessing the vulnerability of communities to landslides. Nat Hazards Earth Syst Sci 7:765–779

    Article  Google Scholar 

  • Romang H (2004) Wirksamkeit und Kosten von Wildbach-Schutzmassnahmen.Verlag des Geographischen Instituts der Universität Bern, p 212

  • Santos JG (2003) Landslide susceptibility and risk maps of Regua (Douro basin, NE Portugal). In: Proceeding of the IAG and IGU-C12 Regional Conference “Geomorphic hazards; towards the prevention of disasters”, Mexico City, Mexico

  • Shrestha A (2005) Vulnerability assessment of weather disasters in Syangja District, Nepal: a case study in Putalibazaar Municipality, Advances Institute on Vulnerability to Global Environmental Change

  • Spichtig S, Bründl M (2008) Verletzlichkeit bei gravitativen Naturgefahren—eine Situationsanalyse. Projekt B5. Schlussbericht. Nationale Plattform Naturgefahren PLANAT, Bern

    Google Scholar 

  • Sterlacchini S, Frigerio S, Giacomelli P, Brambilla M (2007) Landslide risk analysis: a multi-disciplinary methodological approach. Nat Hazards Earth Syst Sci 7:657–675

    Article  Google Scholar 

  • Thieken A, Merz B, Grünthal G, Schwarz J, Radtke K, Smolka A, Gocht M (2005) A comparison of storm, flood and earthquake risk for the city of Cologne, Germany. In: Proceedings of the 1st ARMONIA conference, Barcelona, Spain

  • Turner II BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003) A framework for vulnerability analysis in sustainability science. In: Proceedings of the national academy of sciences, 100(14)

  • UNDHA (1992) Internationally agreed glossary of basic terms related to disaster management. United Nations Department of Humanitarian Affairs

  • UNDRO (1984) Disaster prevention and mitigation—a compendium of current knowledge, vol 11. Preparedness Aspects, New York

  • Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102:251–256

    Article  Google Scholar 

  • Varnes D J (1984) Landslide hazard zonation: a review of principles and practice. Natural Hazards, 3, Paris, UNESCO, p 63

  • Weichselgartner J (2001) Disaster mitigation: the concept of vulnerability revisited. Disaster Prevent Manage 10(2):85–94

    Article  Google Scholar 

  • White G (1945) Human adjustment to floods—a geographical approach to the flood problem in the United States. Research Paper No. 29. University of Chicago, USA

    Google Scholar 

  • Wilhelm C (1997) Wirtschaftlichkeit im Lawinenschutz, Mitteilungen des Eidgenossisches Institut für Schnee- und Lawinenforschung, 54, Davos

  • WMO (1999) Comprehensive risk assessment for natural hazards. Technical document, no. 955. World Meteorological Organisation

  • Zezere JL, Garcia RAC, Oliveira SC, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94:467–495

    Article  Google Scholar 

  • Zhai G, Fukozono T, Ikeda S (2006) An empirical model of fatalities and injuries due to floods in Japan. J Am Water Resour As 42:863–875

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous referees for their valuable comments in the earlier version of this paper. Part of the research for this article was supported by EU-projects of the 6th (Mountain Risks, MRTN-CT-2006-035798) and 7th framework programme (MOVE, 211590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Papathoma-Köhle.

Appendix

Appendix

See Table 3.

Table 3   

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papathoma-Köhle, M., Kappes, M., Keiler, M. et al. Physical vulnerability assessment for alpine hazards: state of the art and future needs. Nat Hazards 58, 645–680 (2011). https://doi.org/10.1007/s11069-010-9632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-010-9632-4

Keywords

Navigation