Skip to main content

Advertisement

Log in

Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics

  • Original paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Sinkholes and land subsidence are among the main coastal geologic hazards. Their occurrence poses a serious threat to the man-made environment, due to the increasing density of population, pipelines and other infrastructures along the coasts, and to the catastrophic nature of the phenomena, which generally occur without any premonitory signs. To assess the potential danger from sinkholes along the coast, it is important to identify and monitor the main factors contributing to the process. This article reports a methodology based on sequential stratigraphic, hydrogeological and geophysical investigations to draw up a susceptibility map of sinkholes in coastal areas. The town of Casalabate situated in the Apulia region (southern Italy), affected by a long history of sinkhole phenomena, is here presented as an example. The approach proposed is based on sequential stratigraphical, geomorphological and geophysical surveys to identify the mechanisms of sinkhole formation and to provide a zonation of the areas in which further sinkhole phenomena may likely occur. Interpretation of the ground penetration radar and electrical tomography profiles has enabled us to identify the potentially most unstable sectors, significantly improving the assessment of the sinkhole susceptibility in the area. The proposed methodology is suitable to be exported in other coastal areas where limestone bedrock is not directly exposed at the surface, but covered by a variable thickness of recent deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andriani G, Walsh N (2002) Physical properties and textural parameters of calcarenitic rocks: qualitative and quantitative evaluations. Eng Geol 67:5–15

    Article  Google Scholar 

  • Ardau F, Balia R, Bianco M, De Waele J (2007) Assessment of cover-collapse sinkholes in SW Sardinia (Italy). In: Parise M, Gunn J (eds) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation. Geological Society, London, pp 47–57 Special publication 279

    Google Scholar 

  • Boenzi F, Caldara M, Pennetta L, Simone O (2006) Environmental aspects related to the physical evolution of some wetlands along the Adriatic coast of Apulia (Southern Italy): a review. J Coast Res 39:170–175

    Google Scholar 

  • Bosellini A, Bosellini FR, Colalongo ML, Parente M, Russo A, Vescogni A (1999) Stratigraphic architecture of the Salento coast from Capo d’Otranto to S. Maria di Leuca (Apulia, southern Italy). Riv Ital Paleontol Stratigr 105:397–415

    Google Scholar 

  • Bossio A, Foresi ML, Margiotta S, Mazzei R, Salvatorini G, Donia F (2006) Stratigrafia neogenico-quaternaria del settore nord-orientale della Provincia di Lecce (con rilevamento geologico alla scala 1:25.000). Geologica Romana 39:63–88

    Google Scholar 

  • Brezinski KD (2007) Geologic and anthropogenic factors influencing karst development in the Frederick region of Maryland. Environ Geosci 14(1):31–48

    Article  Google Scholar 

  • Bruno E, Calcaterra D, Parise M (2008) Development and morphometry of sinkholes in coastal plains of Apulia, southern Italy. Preliminary sinkhole susceptibility assessment. Eng Geol 99:198–209

    Article  Google Scholar 

  • Butler DK (1984) Microgravimetric and gravity gradient techniques for the detection of subsurface cavities. Geophysics 49:1084–1096

    Article  Google Scholar 

  • Cardarelli E, Cercato M, Cerreto A, Di Filippo G (2010) Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophys Prospect 58:685–695

    Article  Google Scholar 

  • Cherubini C, Margiotta B, Sgura A, Walsh N (1987) Caratteri geologico-tecnici dei terreni della città di Brindisi. Mem Soc Geol Ital 37:689–700

    Google Scholar 

  • Cotecchia V, Dai Pra G, Magri G (1969) Oscillazioni tirreniane e oloceniche del livello del mare nel Golfo di Taranto, corredate da datazioni con il metodo del radiocarbonio. Geol Appl Idrogeol 4:93–148

    Google Scholar 

  • Cotecchia V, Dai Pra G, Magri G (1971) Sul Tirreniano della costa ionica salentina (Puglia). Datazione su campione di coralli con il metodo 230Th/234U. Geol Appl Idrogeol 6:105–112

    Google Scholar 

  • De Groot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624

    Article  Google Scholar 

  • De Waele J, Lauritzen SE, Parise M (2011a) On the formation of dissolution pipes in Quaternary coastal calcareous arenites in Mediterranean settings. Earth Surf Process Land 36:143–157

    Article  Google Scholar 

  • De Waele J, Gutierrez F, Parise M, Plan L (2011b) Geomorphology and natural hazards in karst areas: a review. Geomorphology 134:1–8

    Article  Google Scholar 

  • Del Prete S, Iovine G, Parise M, Santo A (2010) Origin and distribution of different types of sinkholes in the plain areas of Southern Italy. Geodinamica Acta 23(1/3):113–127

    Article  Google Scholar 

  • Delle Rose M, Leucci G (2010) Towards an integrated approach for characterization of sinkhole hazards in urban environments: the unstable coastal site of Casalabate, Lecce, Italy. J Geophys Eng 7:143–154

    Article  Google Scholar 

  • Delle Rose M, Parise M (2002) Karst subsidence in south-central Apulia. Italy Int J Speleol 31(1/4):181–199

    Google Scholar 

  • Delle Rose M, Parise M (2004) Slope instability along the Adriatic coast of Salento, southern Italy. In: Proceedings of IX international symposium on landslides, Rio de Janeiro (Brasil), 28 June–2 July 2004, vol 1, pp 399–404

  • Delle Rose M, Parise M (2005) Speleogenesi e geomorfologia del sistema carsico delle Grotte della Poesia nell’ambito dell’evoluzione quaternaria della costa Adriatica Salentina. Atti e Memorie Commissione Grotte “E. Boegan” 40:153–173

    Google Scholar 

  • Delle Rose M, Federico A, Parise M (2004) Sinkhole genesis and evolution in Apulia, and their interrelations with the anthropogenic environment. Nat Hazards Earth Syst Sci 4:747–755

    Article  Google Scholar 

  • Denitto F, Moscatello S, Palmisano P, Poto M, Onorato R (2006) Novità speleologiche, idrologiche e naturalistiche della Palude del Capitano (pSIC IT9150013), Costa Neretina (Lecce). Thalassia Salentina 29:99–116

    Google Scholar 

  • Dobecki TL, Upchurch SB (2006) Geophysical applications to detect sinkholes and ground subsidence. Lead Edge 25:336–341

    Google Scholar 

  • Edmonds C, Green C, Higginbottom I (1987) Subsidence hazard prediction for limestone terrains as applied to the English Cretaceous chalk. Geol Soc Eng, Special Publication 4, pp 283–293

  • Ezersky M (2008) Geoelectric structure of the Ein Gedi sinkhole occurrence site at the Dead Sea shore in Israel. J Appl Geophys 64:56–69

    Article  Google Scholar 

  • Ezersky M, Legchenko A, Camerlynck C, Al-Zoubi A (2009) Identification of sinkhole development mechanism based on a combined geophysical study in Nahal Hever South area (Dead Sea coast of Israel). Environ Geol 58:1123–1141

    Article  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphill’s, Austin, TX

    Google Scholar 

  • Forth RA, Butcher D, Senior R (1999) Hazard mapping of karst along the coast of the Algarve, Portugal. Eng Geol 52(1–2):67–74

    Article  Google Scholar 

  • Galve JP, Bonachea J, Remondo J, Gutierrez F, Guerrero J, Lucha P, Cendrero A, Gutierrez M, Sanchez JA (2008) Development and validation of sinkhole susceptibility models in mantled karst settings. A case study from the Ebro valley evaporite karst (NE Spain). Eng Geol 99:185–197

    Article  Google Scholar 

  • Garcia-Moreno I, Mateos RM (2011) Sinkholes related to discontinuous pumping: susceptibility mapping based on geophysical studies. The case of Crestatx (Majorca, Spain). Environ Earth Sci 64:523–537

    Article  Google Scholar 

  • Grandjean G, Leparoux D (2004) The potential of seismic methods for detecting cavities and buried objects: experimentation at a test site. J Appl Geophys 56:93–106

    Article  Google Scholar 

  • Gutierrez F (1998) Subsidencia por colapso en un karst alluvial. Analisis de estabilidad. In: Gomez-Ortiz A, Salvador Franch F (eds) Investigaciones recientes de la geomorfologia espanola. V Reunion Nacional de Geomorfologia, Barcelona, pp 47–58

    Google Scholar 

  • Gutierrez-Santolalla F, Gutierrez Elorza M, Marin C, Desir G, Maldonado C (2005) Spatial distribution, morphometry and activity of La Puebla de Alfiden sinkhole field in the Ebro River Valley (NE Spain): applied aspects for hazard zonation. Environ Geol 48:360–369

    Article  Google Scholar 

  • Hall DR (1976) Stratigraphy and origin of surficial deposits in sinkholes in south-central Indiana. Geology 4(8):507–509

    Article  Google Scholar 

  • Harding JL (1999) Environmental change during the Holocene in south east Italy: an integrated geomorphological and palynological investigation. Larix Books, Sheffield, p 148

    Google Scholar 

  • Hearty PJ, Dai Pra G (1992) The age and stratigraphy of Middle Pleistocene and younger deposits along the Gulf of Taranto (Southeast Italy). J Coastal Res 8:82–105

    Google Scholar 

  • Jardani A, Revil A, Santos F, Fauchard C, Dupont JP (2007) Detection of referential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophys Prospect 55:749–760

    Article  Google Scholar 

  • Kaufmann JE (2008) A statistical approach to karst collapse hazard analysis in Missouri. In: Yyuhr LB, Calvin Alexander E, Beck BF (eds) Sinkholes and the engineering and environmental impacts of karst, 183. ASCE Geotechnical Special Publication, Huntsville, pp 257–268

  • Kaufmann G, Romanov D, Nielbock R (2011) Cave detection using multiple geophysical methods: Unicorn cave, Harz Mountains, Germany. Geophysics 76(3):B71–B77

    Article  Google Scholar 

  • Kim JH, Yi MJ, Hwang SH, Song Y, Cho SJ, Synn JH (2007) Integrated geophysical surveys for the safety evaluation of a ground subsidence zone in a small city. J Geophys Eng 4:332–347

    Article  Google Scholar 

  • Kourgialas NN, Karatzas GP (2011) Flood management and a GIS modelling method to assess flood—hazard areas—a case study. Hydrol Sci J 56(2):212–225

    Google Scholar 

  • Marcak H, Golebiowski T, Tomecka-Suchon S (2008) Geotechnical analysis and 4D GPR measurements for the assessment of the risk of sinkholes occurring in a Polish mining area. Near Surf Geophys 6(4):233–243

    Google Scholar 

  • Margiotta B (1997) Dinamica degli spazi costieri: le Cesine (Lecce). Lecce, Oistros, p 61

  • Margiotta S, Negri S (2005) Geophysical and stratigraphical research into deep groundwater and intruding seawater in the Mediterranean area (the Salento Peninsula, Italy). Nat Hazards Earth Syst Sci 5:127–136

    Article  Google Scholar 

  • Margiotta S, Mazzone F, Negri S (2010) Stratigraphic revision of Brindisi-Taranto Plain: hydrogeological implications. Memorie Descrittive della Carta Geologica d’Italia 90:165–180

    Google Scholar 

  • Mastronuzzi G, Sansò P (2002) Holocene coastal dune development and environmental changes in Apulia (southern Italy). Sediment Geol 150:139–152

    Article  Google Scholar 

  • Morelli G, Labrecque DJ (1996) Advances in ert inverse modelling. Eur J Environ Eng Geophys 1:171–186

    Article  Google Scholar 

  • Moretti M (2000) Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene eolian deposits (Apulian foreland, southern Italy). Sediment Geol 135:167–179

    Article  Google Scholar 

  • Moretti M, Owen G, Tropeano M (2011) Soft-sediment deformation induced by sinkhole activity in shallow marine environments: a fossil example in the Apulian Foreland (Southern Italy). Sediment Geol 235:331–342

    Article  Google Scholar 

  • Norris RM, Back W (1990) Erosion of seacliff by groundwater. In: Higgins CG, Coates DR (eds) Groundwater geomorphology: the role of subsurface water in earth-surface processes and landforms. Geological Society of America Special Paper 252, pp 283–290

  • Palmentola G (1987) Lineamenti geologici e morfologici del Salento leccese. Quad Ric Centro Studi Geotec e d’Ing 11:7–23

    Google Scholar 

  • Parasnis DS (1997) Principles of applied geophysics, 5th edn. Chapman & Hall, London

    Google Scholar 

  • Parise M (2008) I sinkholes in Puglia. In: Nisio S. (ed) I fenomeni naturali di sinkhole nelle aree di pianura italiane. Memorie Descrittive della Carta Geologica d’Italia 85:309–334

  • Parise M, Lollino P (2011) A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology 134(1–2):132–143

    Article  Google Scholar 

  • Primavera M, Simone O, Fiorentino G, Caldara M (2011) The paleoenvironmental study of the Alimini Piccolo Lake enables a reconstruction of Holocene sea level changes in southeast Italy. Holocene 21:553–563

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, New York

    Google Scholar 

  • Tharp TM (1999) Mechanics of upward propagation of cover collapse sinkhole. Eng Geol 52:23–33

    Article  Google Scholar 

  • Tharp TM (2002) Poroelastic analysis of cover-collapse sinkhole formation by piezometric surface drawdown. Environ Geol 42:447–456

    Article  Google Scholar 

  • Tolmachev V, Leonenko M (2011) Experience in collapse risk assessment of building on covered karst landscapes in Russia. In: van Beynen P (ed) Karst management. Springer, Berlin, pp 75–102

    Chapter  Google Scholar 

  • van Schoor M (2002) Detection of sinkholes using 2D electrical resistivity imaging. J Appl Geophys 50:393–399

    Article  Google Scholar 

  • Waltham T, Bell FG, Culshaw MG (2005) Sinkholes and subsidence: karst and cavernous rocks in engineering and construction. Springer, Praxis, p 382

    Google Scholar 

  • White WB (1990) Surface and near-surface karst landforms. In: Higgins CG, Coates DR (eds) Groundwater geomorphology: the role of subsurface water in earth-surface processes and landforms. Geological Society of America Special Paper 252, pp 157–175

  • Zhou W, Beck BF (2008) Management and mitigation of sinkholes on karst lands: an overview of practical applications. Env Geol 55:837–851

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margiotta, S., Negri, S., Parise, M. et al. Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics. Nat Hazards 62, 657–676 (2012). https://doi.org/10.1007/s11069-012-0100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0100-1

Keywords

Navigation