Skip to main content

Advertisement

Log in

Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The main objective of this study is to assess regional landslide hazards in the Hoa Binh province of Vietnam. A landslide inventory map was constructed from various sources with data mainly for a period of 21 years from 1990 to 2010. The historic inventory of these failures shows that rainfall is the main triggering factor in this region. The probability of the occurrence of episodes of rainfall and the rainfall threshold were deduced from records of rainfall for the aforementioned period. The rainfall threshold model was generated based on daily and cumulative values of antecedent rainfall of the landslide events. The result shows that 15-day antecedent rainfall gives the best fit for the existing landslides in the inventory. The rainfall threshold model was validated using the rainfall and landslide events that occurred in 2010 that were not considered in building the threshold model. The result was used for estimating temporal probability of a landslide to occur using a Poisson probability model. Prior to this work, five landslide susceptibility maps were constructed for the study area using support vector machines, logistic regression, evidential belief functions, Bayesian-regularized neural networks, and neuro-fuzzy models. These susceptibility maps provide information on the spatial prediction probability of landslide occurrence in the area. Finally, landslide hazard maps were generated by integrating the spatial and the temporal probability of landslide. A total of 15 specific landslide hazard maps were generated considering three time periods of 1, 3, and 5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73(3–4):247–265. doi:10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Lee S (2012) Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci (0). doi:10.1016/j.cageo.2012.03.003

  • Ballabio C, Sterlacchini S (2012) Support vector machines for landslide susceptibility mapping: the Staffora River Basin case study, Italy. Mathem Geosci 44(1):47–70. doi:10.1007/s11004-011-9379-9

    Article  Google Scholar 

  • Brabb E (1984) Innovative approaches to landslide hazard mapping. In: Proceedings of 4th international symposium on landslides, 1984. Canadian Geotechnical Society. Toronto, Canada, pp 307–323

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler Ser a Phys Geogr 62(1–2):23–27. doi:10.2307/520449

    Article  Google Scholar 

  • Carrara A, Pike RJ (2008) GIS technology and models for assessing landslide hazard and risk. Geomorphology 94(3–4):257–260. doi:10.1016/j.geomorph.2006.07.042

    Article  Google Scholar 

  • Chacon J, Irigaray C, Fernandez T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411. doi:10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Chleborad AF (2000) preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle, Washington. US geological survey open-file report 00-0469

  • Chleborad AF, Baum RL, Godt JW (2006) Rainfall thresholds for forecasting landslides in the Seattle, Washington, area-exceedance and probability. USGS open-file report 2006–1064

  • Chleborad AF, Baum RL, Godt JW, Powers PS (2008) A prototype system for forecasting landslides in the Seattle, Washington, area. Rev Eng Geol 20:103–120. doi:10.1130/2008.4020(06

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Coe JA, Michael JA, Crovelli RA, Savage WZ, Laprade WT, Nashem WD (2004) Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environ Eng Geosci 10(2):103. doi:10.2113/10.2.103

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30(1–2):79–93. doi:10.1016/s0169-555x(99)00046-x

    Article  Google Scholar 

  • Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102(3–4):193–213. doi:10.1016/j.enggeo.2008.03.018

    Article  Google Scholar 

  • Crosta G (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35(2):131–145. doi:10.1007/s002540050300

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3:81–93

    Article  Google Scholar 

  • Crovelli RA (2000) Probability models for estimation of number and costs of landslides. United States geological survey open file report 00-249. http://pubs.usgs.gov/of/2000/ofr-00-0249/ProbModels.html

  • Dahal RK, Hasegawa S (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100(3–4):429–443. doi:10.1016/j.geomorph.2008.01.014

    Article  Google Scholar 

  • Dahal R, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2009) Failure characteristics of rainfall-induced shallow landslides in granitic terrains of Shikoku Island of Japan. Environ Geol 56(7):1295–1310. doi:10.1007/s00254-008-1228-x

    Article  Google Scholar 

  • Das I, Stein A, Kerle N, Dadhwal V (2011) Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India. Landslides 8(3):293–308. doi:10.1007/s10346-011-0257-9

    Article  Google Scholar 

  • Devkota K, Regmi A, Pourghasemi H, Yoshida K, Pradhan B, Ryu I, Dhital M, Althuwaynee O (2012) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards:1–31. doi:10.1007/s11069-012-0347-6

  • D’Odorico P, Fagherazzi S (2003) A probabilistic model of rainfall-triggered shallow landslides in hollows: a long-term analysis. Water Resour Res 39(9). doi:10.1029/2002wr001595

  • Frattini P, Crosta G, Sosio R (2009) Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrol Process 23(10):1444–1460. doi:10.1002/hyp.7269

    Article  Google Scholar 

  • Giannecchini R, Galanti Y, Avanzi GD (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12(3):829–842. doi:10.5194/nhess-12-829-2012

    Article  Google Scholar 

  • Glade T (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure Appl Geophys 157(6):1059–1079. doi:10.1007/s000240050017

    Article  Google Scholar 

  • Godt JW, Baum RL, Chleborad AF (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Proc Land 31(1):97–110. doi:10.1002/esp.1237

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1–4):272–299. doi:10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184. doi:10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3):239–267. doi:10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark C (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. doi:10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Harp EL, Reid ME, McKenna JP, Michael JA (2009) Mapping of hazard from rainfall-triggered landslides in developing countries: examples from Honduras and Micronesia. Eng Geol 104(3–4):295–311. doi:10.1016/j.enggeo.2008.11.010

    Article  Google Scholar 

  • Heyerdahl H, Harbitz CB, Domaas U, Sandersen F, Tronstad K, Nowacki F, Engen A, Kjekstad O, Devoli G, Buezo SG, Diaz MR, Hernandez W (2003) Rainfall induced lahars in volcanic debris in Nicaragua and El Salvador: practical mitigation. In: Proceedings of international conference on fast slope movements—prediction and prevention for risk mitigation, IC-FSM2003, Naples. Patron Pub, pp 275–282

  • Hue TT, Duong TV, Toan DV, Nghinh LT, Minh VC, Pho NV, Xuan PT, Hoan LT, Huyen NX, Pha PD, Chinh VV, Thom BV (2004) Investigation and Assessment of the Types of Geological Hazard in the Territory of Vietnam and Recommendation of Remedial Measures. Phase II: a study of the Northern Mountainous Province of Vietnam. Institute of Geological Sciences, Vietnam Academy of Science and Technology, Hanoi

  • Jaiswal P, van Westen CJ (2009) Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology 112(1–2):96–105. doi:10.1016/j.geomorph.2009.05.008

    Article  Google Scholar 

  • Jaiswal P, van Westen CJ, Jetten V (2010) Quantitative landslide hazard assessment along a transportation corridor in southern India. Eng Geol 116(3–4):236–250. doi:10.1016/j.enggeo.2010.09.005

    Article  Google Scholar 

  • Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54(3–4):137–156. doi:10.1016/s0169-555x(02)00339-2

    Article  Google Scholar 

  • Jakob M, Holm K, Lange O, Schwab JW (2006) Hydrometeorological thresholds for landslide initiation and forest operation shutdowns on the north coast of British Columbia. Landslides 3(3):228–238. doi:10.1007/s10346-006-0044-1

    Article  Google Scholar 

  • Jemec M, Komac M (2012) Rainfall patterns for shallow landsliding in perialpine Slovenia. Nat Hazards:1–13. doi:10.1007/s11069-011-9882-9

  • Kim SK, Hong WP, Kim YM (1992) Prediction of rainfall-triggered landslides in Korea. Landslides, vols 1 and 2

  • Lee M-J, Choi J-W, Oh H-J, Won J-S, Park I, Lee S (2012) Ensemble-based landslide susceptibility maps in Jinbu area, Korea. Environ Earth Sci:1–15. doi:10.1007/s12665-011-1477-y

  • Lopez Saez J, Corona C, Stoffel M, Schoeneich P, Berger F (2012) Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 138(1):189–202. doi:10.1016/j.geomorph.2011.08.034

    Article  Google Scholar 

  • Marjanovic M, Kovacevic M, Bajat B, Vozenílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123(3):225–234. doi:10.1016/j.enggeo.2011.09.006

    Article  Google Scholar 

  • Marques R, Zêzere J, Trigo R, Gaspar J, Trigo I (2008) Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): relationships with the North Atlantic Oscillation. Hydrol Process 22(4):478–494. doi:10.1002/hyp.6879

    Article  Google Scholar 

  • Martelloni G, Segoni S, Fanti R, Catani F (2011) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides:1–11. doi:10.1007/s10346-011-0308-2

  • Matsushi Y, Matsukura Y (2007) Rainfall thresholds for shallow landsliding derived from pressure-head monitoring: cases with permeable and impermeable bedrocks in Boso Peninsula, Japan. Earth Surf Proc Land 32(9):1308–1322. doi:10.1002/esp.1491

    Article  Google Scholar 

  • Melchiorre C, Frattini P (2012) Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway. Clim Change 113(2):413–436. doi:10.1007/s10584-011-0325-0

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically-based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171. doi:10.1029/93wr02979

    Article  Google Scholar 

  • My NQ (2007) Construction of the environmental hazard zonation map for northwest territory of Vietnam. Vietnam Geography Association, Hanoi

    Google Scholar 

  • Oh H-J, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37(9):1264–1276. doi:10.1016/j.cageo.2010.10.012

    Article  Google Scholar 

  • Osanai N, Shimizu T, Kuramoto K, Kojima S, Noro T (2010) Japanese early-warning for debris flows and slope failures using rainfall indices with Radial Basis Function Network. Landslides 7(3):325–338. doi:10.1007/s10346-010-0229-5

    Article  Google Scholar 

  • Pasuto A, Silvano S (1998) Rainfall as a triggering factor of shallow mass movements. A case study in the Dolomites, Italy. Environ Geol 35:184–189

    Article  Google Scholar 

  • Petrucci O, Polemio M (2009) The role of meteorological and climatic conditions in the occurrence of damaging hydro-geologic events in Southern Italy. Nat Hazards Earth Syst Sci 9(1):105–118

    Article  Google Scholar 

  • Petrucci O, Polemio M, Pasqua A (2009) Analysis of damaging hydrogeological events: the case of the Calabria Region (Southern Italy). Environ Manage 43(3):483–495. doi:10.1007/s00267-008-9234-z

    Article  Google Scholar 

  • Polemio M, Sdao F (1999) The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy). Eng Geol 53(3–4):297–309. doi:10.1016/s0013-7952(98)00083-0

    Article  Google Scholar 

  • Pourghasemi H, Pradhan B, Gokceoglu C (2012a) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996. doi:10.1007/s11069-012-0217-2

    Article  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012b) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84. doi:10.1016/j.catena.2012.05.005

    Article  Google Scholar 

  • Pradhan B (2010a) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Computat Intell Syst 3(3):370–381

    Article  Google Scholar 

  • Pradhan B (2010b) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320. doi:10.1007/s12524-010-0020-z

    Article  Google Scholar 

  • Pradhan B (2011a) Manifestation of an advanced fuzzy logic model coupled with geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environ Ecol Stat 18(3):471–493. doi:10.1007/s10651-010-0147-7

    Article  Google Scholar 

  • Pradhan B (2011b) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63(2):329–349. doi:10.1007/s12665-010-0705-1

    Article  Google Scholar 

  • Pradhan B (2012) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. doi:10.1016/j.cageo.2012.08.023

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Modell Softw 25(6):747–759. doi:10.1016/j.envsoft.2009.10.016

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2010) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Environ Urban Syst 34(3):216–235. doi:10.1016/j.compenvurbsys.2009.12.004

    Article  Google Scholar 

  • Reichenbach P, Cardinali M, De Vita P, Guzzetti F (1998) Regional hydrological thresholds for landslides and floods in the Tiber River Basin (central Italy). Environ Geol 35(2):146–159. doi:10.1007/s002540050301

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity–duration thresholds in Japan. Geomorphology 118(1–2):167–175. doi:10.1016/j.geomorph.2009.12.016

    Article  Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Baum RL, Conversini P (2008) Modeling landslide recurrence in Seattle, Washington, USA. Eng Geol 102(3–4):227–237. doi:10.1016/j.enggeo.2008.03.013

    Article  Google Scholar 

  • Salciarini D, Tamagnini C, Conversini P, Rapinesi S (2012) Spatially distributed rainfall thresholds for the initiation of shallow landslides. Nat Hazards 61(1):229–245. doi:10.1007/s11069-011-9739-2

    Article  Google Scholar 

  • Schmidt M, Glade T (2003) Linking global circulation model outputs to regional geomorphic models: a case study of landslide activity in New Zealand. Climate Res 25(2):135–150. doi:10.3354/cr025135

    Article  Google Scholar 

  • Sengupta A, Gupta S, Anbarasu K (2010) Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Nat Hazards 52(1):31–42. doi:10.1007/s11069-009-9352-9

    Article  Google Scholar 

  • Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Applicat 38(7):8208–8219. doi:10.1016/j.eswa.2010.12.167

    Article  Google Scholar 

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35(2–3):124–130

    Article  Google Scholar 

  • Thach NN, Xuan NT, My NQ, Quynh PV, Minh ND, Hoa DB, Bao DV, Dan NV, Thuy TV, Hien NT (2002) Application of remote sensing and geographical information system for research and forecast of natural hazards in Hoa Binh Province. National University Hanoi, Hanoi

    Google Scholar 

  • Thinh DV, Dong NP, Hong PM, Hung PV, Khoi TN, Ke TD, Phu DV, Thang PX, Thanh PV, Thang PH, Thay BV, Thinh NT, Thien TV, Tu MT, Vinh BX (2005) the investigated report of natural hazards in the Northwest of Vietnam. Northern Geological Mapping Division, Hanoi

    Google Scholar 

  • Tien Bui D, Lofman O, Revhaug I, Dick O (2011a) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59:1413–1444. doi:10.1007/s11069-011-9844-2

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2011b) Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 45:199–211. doi:10.1016/j.cageo.2011.10.031

    Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012a) Landslide susceptibility assessment in Vietnam using Support vector machines, Decision tree and Naïve Bayes models. Mathematical Problems in Engineering. doi:10.1155/2012/9746382012:26

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012b) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology 171–172:12–29

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012c) Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 45:199–211. doi:10.1016/j.cageo.2011.10.031

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012d) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96:28–40. doi:10.1016/j.catena.2012.04.001

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Env 65:167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, Paris

    Google Scholar 

  • Wilson RC, Wieczorek GF (1995) Rainfall thresholds for the initiation of debris flows at La Honda, California. Environ Eng Geosci 1(1):11–27

    Google Scholar 

  • Xu C, Xu XW, Dai FC, Saraf AK (2012) Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Comput Geosci 46:317–329. doi:10.1016/j.cageo.2012.01.002

    Article  Google Scholar 

  • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101(4):572–582. doi:10.1016/j.geomorph.2008.02.011

    Article  Google Scholar 

  • Yeon YK, Han JG, Ryu KH (2010) Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol 116(3–4):274–283. doi:10.1016/j.enggeo.2010.09.009

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836. doi:10.1007/s12665-009-0394-9

    Article  Google Scholar 

  • Zare M, Pourghasemi H, Vafakhah M, Pradhan B (2012) Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian J Geosci:1–16. doi:10.1007/s12517-012-0610-x

  • Zezere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5(3):331–344

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Norwegian Quota scholarship program. The first author would like to thank Dr. Razak Seidu (Norwegian University of Life Sciences) and Dr. Tran Tan Van (Director of Vietnam Institute of Geosciences and Mineral Resources) for their valuable comments. The data analysis and write-up were carried out as a part of the first author’s PhD studies at the Geomatics Section, Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieu Tien Bui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien Bui, D., Pradhan, B., Lofman, O. et al. Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Nat Hazards 66, 707–730 (2013). https://doi.org/10.1007/s11069-012-0510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0510-0

Keywords

Navigation