Skip to main content
Log in

Rainfall event-based landslide susceptibility zonation mapping

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akgün A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol 51:1377–1387

    Article  Google Scholar 

  • Atkitson PM, Massari R (1998) Generalized linear modeling of susceptibility to landsliding in the Central Apennines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Bai S-B, Wong J, Lu G-N, Zhou P, Hou S–S, Xu S-N (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area, China. Geomorphology 115:23–31

    Article  Google Scholar 

  • Bednarik M, Yilmaz I, Marschalko M (2012) Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’ landslide area in south-west, Slovakia. Nat Hazards. doi:10.1007/s11069-012-0257-7 (online first)

  • Bui DT, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59:1413–1444

    Article  Google Scholar 

  • Carrara A (1983) Uncertainty in evaluating landslide hazard and risk. In: Nemec J, Nigs JM, Siccardi F (eds) Prediction and perception of natural hazards. Kluwer, Dordrecht, pp 101–111

    Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44(8):949–962. doi:10.1007/s00254-003-0838-6

    Article  Google Scholar 

  • Chang K-T, Chiang S-H, Hsu M-L (2007) Modeling typhoon and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7:411–423

    Article  Google Scholar 

  • Chen Z, Wang J (2007) Landslide hazard mapping using logistic regression model in Mackenzie Valley Canada. Nat Hazards 42:75–89

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Yamanaka M, Nishino K (2006) Rainfall triggered flow-like landslides: understanding from southern hills of Kathmandu, Nepal and northern Shikoku, Japan. In: Proceedings of 10th International Congress of IAEG, The Geological Society of London, IAEG2006 Paper number 819, pp 1–14 (CD-ROM)

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2008a) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102(3–4):496–510. doi:10.1016/j.geomorph.2008.05.041

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2008b) GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol 54(2):314–324. doi:10.1007/s00254-007-0818-3

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Nishino K (2008c) Failure characteristics of rainfall-induced shallow landslides in granitic terrains of Shikoku Island of Japan. Environ Geol 56(7):1295–1310. doi:10.1007/s00254-008-1228-x

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Yamanaka M, Bhandary NP, Yatabe R (2010) Statistical and deterministic landslide hazard assessment in the Himalayas of Nepal. In: Williams et al. (eds) IAEG 2010 conference, Geologically active. Taylor & Francis Group, London, pp 1053–1060

  • Dahal RK, Hasegawa S, Yamanaka M, Bhandary NP, Yatabe R (2011) Rainfall-induced landslides in the residual soil of andesitic terrain, western Japan. J Nepal Geol Soc 42:127–142

    Google Scholar 

  • Dahal RK, Hasegawa S, Bhandary NP, Poudel PP, Nonomura A, Yatabe R (2012) A replication of landslide hazard mapping at catchment scale. Geomat Nat Hazards Risk 3(2):161–192. doi:10.1080/19475705.2011.629007

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide Characteristics and slope instability modeling using GIS, Lantau Island Hongkong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain in Lantau Island, Hong Kong. Environ Geol 40:381–391

    Article  Google Scholar 

  • Das I, Sahoo S, van Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the Northern Himalaya (India). Geomorphology 114:627–637

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • Fell R, Corominas J, Bonard C, Cascini L, Leroi E, Savage WZ (2008) Commentary guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3–4):85–98

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111:62–72

    Article  Google Scholar 

  • Geological Survey of Japan (2002) Computer graphics geology of Japanese Islands CD-ROM version

  • Ghimire M (2011) Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins. Nat Hazards 56:299–320

    Article  Google Scholar 

  • Ghosh S, van Westen CJ, Carranza EJM, Jetten VG, Cardinali M, Rossi M, Guzzetti F (2012) Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Eng Geol 128:49–62. doi:10.1016/j.enggeo.2011.03.016

    Article  Google Scholar 

  • Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27

    Article  Google Scholar 

  • Guzzetti F (2005) Landslide hazard and risk assessment, PhD thesis, Rheinischen Friedrich-Wilhelms-Univestität Bonn, Germany, p 373 (unpublished)

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184

    Article  Google Scholar 

  • Hiura H, Kaibori M, Suemine A, Yokoyama S, Murai M (2005) Sediment related disasters generated by typhoons in 2004. In: Senneset K, Flaate K, Larsen JO (eds) Landslides and avalanches ICFL2005 Norway, pp 157–163

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, p 375

  • Jade S, Sarkar S (1993) Statistical model for slope instability classifications. Eng Geol 36:71–98

    Article  Google Scholar 

  • Kayastha P, Dhital MR, Smedt FD (2012) Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal. Nat Hazards. doi:10.1007/s11069-012-0163-z. Online version, 8 April 2012

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data journals. Int J Remote Sens 26(7):1477–1491. doi:10.1080/01431160412331331012

    Article  Google Scholar 

  • Lee S, Choi J (2004) Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int J Geogr Inf Sci 18:789–814

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article  Google Scholar 

  • Lee S, Touch S (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50(6):847–855

    Article  Google Scholar 

  • Lee S, Ryu JH, Min K, Won JS (2003) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Proc Land 28:1361–1376

    Article  Google Scholar 

  • Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94(3–4):379–400

    Article  Google Scholar 

  • Miyahisa M, Inami U, Kondo M, Nagai K (1976) Subsurface geological map of Niihama area. Ehime Prefectural Office, Matsuyama, Ehime, Japan

    Google Scholar 

  • Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20. doi:10.1016/j.enggeo.2009.10.001

    Google Scholar 

  • Nefeslioglu HA, Gokceoglu C (2011) Probabilistic risk assessment in medium scale for rainfall induced earthflows: Catakli catchment area (Cayeli, Rize, Turkey). Math Prob Eng. doi:10.1155/2011/280431 (Article ID 280431)

  • Ohlmacher GO, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Ozdemir A (2011) Landslide susceptibility mapping using Bayesian approach in the Sultan Mountains (Aks¸ehir, Turkey). Nat Hazards 59(3):1573–1607. doi:10.1007/s11069-011-9853-1

    Article  Google Scholar 

  • Oztekin B, Topal T (2005) GIS-based detachment susceptibility analyses of a cut slope in limestone, Ankara-Turkey. Environ Geol 49(1):124–132. doi:10.1007/s00254-005-0071-6

    Article  Google Scholar 

  • Pantha BR, Yatabe R, Bhandary NP (2008) GIS-based landslide susceptibility zonation for roadside slope repair and maintenance in the Himalayan region. Episodes 31(4):384–391

    Google Scholar 

  • Poudyal CP, Chang C, Oh H-J, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61:1049–1064

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards. doi:10.1007/s11069-012-0217-2 (online first)

  • Ramani SE, Pitchaimani K, Gnanamanickam VR (2011) GIS based-landslide susceptibility mapping of Tevankarai Ar Sub-watershed, Kodaikhanal, India using binary logistic regression analysis. Mt Sci 8:505–517

    Article  Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115:172–187

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2:61–69

    Article  Google Scholar 

  • Schicker R, Moon V (2012) Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology 161–162:10–57

    Google Scholar 

  • Siddle HJ, Jones DB, Payne HR (1991) Development of a methodology for landslip potential mapping in the Rhondda Valley. In: Chandler RJ (ed) Slope stability engineering. Thomas Telford, London, pp 137–142

    Google Scholar 

  • Simizu T, Tanbara K (1976) Soil map of Niihama area. Ehime Prefectural Office, Matsuyama, Ehime, Japan

    Google Scholar 

  • Suzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45(5):665–679. doi:10.1007/s00254-003-0917-8

    Article  Google Scholar 

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76(3–4):392–410. doi:10.1016/j.geomorph.2005.12.003

    Article  Google Scholar 

  • Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessment in the Champagne-Ardenne region (France). Geomorphology 115:141–255

    Article  Google Scholar 

  • van Westen CJ (1997) Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC Publication, Enschede, pp 73–84

  • van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Varnes DJ (1984) International association of engineering geology commission on landslides and other mass movements on slopes: landslide hazard zonation: a review of principles and practice. UNESCO, Paris 63 pp

    Google Scholar 

  • Wu W, Siddle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31:2097–2110

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Yin KI, Yan TZ (1988) Statistical prediction models for slope instability of metamorphosed rocks. In: Proceedings of the 5th international symposium on landslides, Lausanne, vol 2, pp 1269–1272

  • Zhu L, Huang J (2006) GIS-based logistic regression method for landslide susceptibility mapping in regional scale. Zhejiang Univ Sci A 7(12):2007–2017

    Article  Google Scholar 

Download references

Acknowledgments

The GIS data, particularly the details of landslide spots, obtained from Asia Air Survey Co. Ltd. through Prof. Hiromitsu Yamagishi of Ehime University are sincerely acknowledged. Authors are also thankful to Mr. Masatoshi Anakura and Kiran Prasad Acharya for technical support during preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Netra Prakash Bhandary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandary, N.P., Dahal, R.K., Timilsina, M. et al. Rainfall event-based landslide susceptibility zonation mapping. Nat Hazards 69, 365–388 (2013). https://doi.org/10.1007/s11069-013-0715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0715-x

Keywords

Navigation