Skip to main content

Advertisement

Log in

Non-stochastic long-term prediction model for US tornado level

  • Short Communication
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Last year, natural catastrophes caused US$ 160 bn in overall losses and US$ 65 bn in insured losses worldwide (according to Munich Re Group 2013). In the United States alone, Hurricane Sandy affected more than twenty states and caused severe damage and deadly flooding in the states of New York, New Jersey, and Connecticut. The tristate area suffered a mass loss of homes. These natural disasters underscore the importance of predictive modeling of catastrophic weather events. This article analyzes the trends and predictions of one type of catastrophic weather event—the USA tornado level (EF3–EF5). We created a model that predicts tornado level function as a function of frequencies from the Moon’s spectrum. Results from the predictive model were highly correlated with the historical data. Results were also compared to and exceeded those generated by a prior model developed by Isakov, Mezrin, and Suprun (presentation at the Global Derivatives Trading and Risk Management USA, 2011). This model suggests that tornadoes and periodicities of tornadoes are associated with the Sun–Earth–Moon gravitational/magnetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Anderson CJ, Wikle CK, Arritt RW (2003) Covariability of annual United States tornado report counts and climate indices. In: Transactions of the 14th symposium on global change and climate variations

  • Bayarri MJ, Berger JO, Calder ES, Dalbey K, Lunagomez S, Patra AK, Pitman EB, Spiller ET, Wolpert RL (2009) Using statistical and computer models to quantify volcanic hazards. Duke University, working papers

  • Bois E, Boudin F, Journet A (1996) Secular variation of Moon’s rotation rate. Astron Astrophys 314:989

    Google Scholar 

  • Dergachev VA, Vasilyev SS, Raspopov OM, Ungner X (2011) Geomagnetic field, cosmic races and Earth climate: relationship changes. Phys Earth 75(6):898–901

    Google Scholar 

  • Drton M, Marzban C, Guttorp P, Schaefer JT (2003) A Markov chain model of tornadic activity. Am Meteorol Soc 131(12):2941–2953

    Google Scholar 

  • Gahalaut VK, Kuznetsov IV, Kosobokov VG, Gabrielov AM, Keilis-Borok VI (1992) Application of pattern recognition algorithm in the seismic belts of Indian convergent plate margins—M8 algorithm. Proc Indian Acad Sci (Earth Planet Sci) 101(3):239–254

    Google Scholar 

  • Geman H (2009) Commodity and commodity derivatives. Wiley, New York

    Google Scholar 

  • Geman H, Yor M (1997) Stochastic time changes in catastrophe option pricing. Insur Math Econ 27(3):185–193

    Google Scholar 

  • Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2012) Solar influences on climate. Rev Geophys 50:RG1006. doi:10.1029/2011RG000387

    Article  Google Scholar 

  • Hainaut D, Boucher J-P. Frequency and severity modelling with multifractal processes: an application to US tornadoes. http://www.crest.fr/ckfinder/userfiles/files/pageperso/dhainaut/HainautBoucherFractales.pdf. Accessed 16 July 2013

  • Isakov A, Mezrin V, Suprun D (2011) Long term predictability of catastrophic weather events and implications for insurance and financial risk. Presentation at the Global Derivatives Trading and Risk Management USA

  • Jaimungal S, Wang T (2005) Catastrophe options with stochastic interest rates and compound Poisson losses. http://fisher.utstat.toronto.edu/sjaimung/papers/JaimungalWang0106.pdf

  • Kardashov VR, Eppelbaum LV (2008) Mathematical models of strongly nonlinear geophysical phenomena. In: Transactions of the 5th European conference of mathematicians, Amsterdam, The Netherlands, 2 p

  • Keilis-Borok VI (2002) Earthquake prediction: state-of-the-art and emerging possibilities. Annu Rev Earth Planet Sci 30:1–33

    Article  Google Scholar 

  • Keilis-Borok VI, Knopoff L, Kossobokov V, Rotvain I (1990) Intermediate-term prediction in advance of the Loma Prieta Earthquake. Geophys Res Lett 17(9):1461–1464

    Article  Google Scholar 

  • Keilis-Borok V, Shebalin P, Gabrielov A, Turcotte D (2004) Reverse tracing of short-term earthquake precursors. Phys Earth Planet Interiors 145(1–4):75–78

    Article  Google Scholar 

  • Landscheidt T (1995) Die kosmische Funktion des Goldenen Schnitts. In: Richter PH (ed) Hsg.: Sterne, Mond und Kometen. Bremen und die Astronomie. Verlag H. M. Hauschild, Bremen, pp 240–276

  • Landscheidt T (2013) Solar activity of El Nino and LA Nina. http://www.john-daly.com/sun-enso/sun-enso.htm

  • Love JJ, Mursula K, Tsai VC, Perkins DM (2011) Are secular correlations between sunspots, geomagnetic activity, and global temperature significant? Geophys Res Lett 38:L21703. doi:10.1029/2011GL049380

    Article  Google Scholar 

  • Marzban C, Schaefer JT (1999) The correlation between U.S. tornadoes and Pacific Sea surface temperatures. http://faculty.washington.edu/marzban/el.pdf

  • Munich Re Group (2013) Natural catastrophe statistics for 2012 dominated by weather extremes in USA. http://www.munichre.com/en/media_relations/press_releases/2013/2013_01_03_press_release.aspx

  • Naylor J, Gilmore MS (2012) Environmental factors influential to the duration and intensity of tornadoes in simulated supercells. Geophys Res Lett 39:L17802. doi:10.1029/2012GL053041

    Article  Google Scholar 

  • Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber Ch, Schmidt R, Schwintzer P, Sun H-P, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geodesy 79:573–585

    Article  Google Scholar 

  • NOAA National Climatic Data Center (2011, 2012, 2013) US Tornado climatology. http://www.ncdc.noaa.gov/oa/climate/severeweather/tornadoes.html

  • Pazur A, Winklhofer M (2008) Magnetic effect on CO2 solubility in seawater: a possible link between geomagnetic field variations and climate. Geophys Res Lett 35:L16710. doi:10.1029/2008GL034288

    Article  Google Scholar 

  • Showstack R (2013) Obama calls for more action on climate change during State of the Union address. EOS 94(8):78–79

    Article  Google Scholar 

  • Sura P (2012) Stochastic models of climate extremes: theory and observations. Dept. of Earth, Ocean and Atmospheric Science and Center for Ocean-Atmospheric Prediction Studies, Florida State Univ, Tallahassee

    Google Scholar 

  • Vaugirard VE (2003) Valuing catastrophe bonds by Monte Carlo simulations. Appl Math Financ 10:75–90

    Article  Google Scholar 

  • Veselov KE (1986) Gravity survey. Nedra, Moscow (in Russian)

    Google Scholar 

  • Yaroshevich MI (2011) On some signatures of gravity anomaly influence to tropical cyclones of the north-west part of the Pacific Ocean. Doklady Russ Acad Sci 437(4):548–552

    Google Scholar 

  • Yoder CF (1981) The free librations of a dissipative Moon. Phil Trans R Soc Ser A 303:327–338

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the contribution of the deceased Prof. Boris Ya. Gelchinsky, without whose work this article would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev V. Eppelbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppelbaum, L.V. Non-stochastic long-term prediction model for US tornado level. Nat Hazards 69, 2269–2278 (2013). https://doi.org/10.1007/s11069-013-0787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0787-7

Keywords

Navigation