Skip to main content

Advertisement

Log in

A GIS method for landslide inventory and susceptibility mapping in the Río El Estado watershed, Pico de Orizaba volcano, México

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In volcanic terrains, dormant stratovolcanoes are very common and can trigger landslides and debris flows continually along stream systems, thereby affecting human settlements and economic activities. It is important to assess their potential impact and damage through the use of landslide inventory maps and landslide models. In Mexico, numerous geographic information systems (GIS)-based applications have been used to represent and assess slope stability. However, there is no practical and standardized landslide mapping methodology under a GIS. This work provides an overview of the ongoing research project from the Institute of Geography at the National Autonomous University of Mexico that seeks to conduct a multi-temporal landslide inventory and produce a landslide susceptibility map by using GIS. The Río El Estado watershed on the southwestern flank of Pico de Orizaba volcano, the highest mountain in Mexico, is selected as a study area. The geologic and geomorphologic factors in combination with high seasonal precipitation, high degree of weathering, and steep slopes predispose the study area to landslides. The method encompasses two main levels of analysis to assess landslide susceptibility. First, the project aims to derive a landslide inventory map from a representative sample of landslides using aerial orthophotographs and field work. Next, the landslide susceptibility is modelled by using multiple logistic regression implemented in a GIS platform. The technique and its implementation of each level in a GISs-based technology is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angeli MG, Pasuto A, Silvano S (2000) A critical review of landslide monitoring experiences. Eng Geol 55:133–147

    Article  Google Scholar 

  • Blahut J, Van Westen CJ, Sterlacchini S (2010) Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 119(1–2):36–51

    Article  Google Scholar 

  • Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earth flows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72:250–271

    Article  Google Scholar 

  • Capra L, Lugo-Hubp J (2006) Fenómenos de remoción en masa en el poblado de Zapotitlán de Méndez, Puebla: relación entre litología y tipo de movimiento. Revista mexicana de ciencias geológicas 20(2):95–106

    Google Scholar 

  • Capra L, Macías JL, Scott KM, Abrams M, Garduño-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, México. Behavior, and implication for hazard assessment. J Volcanol Geotherm Res 113(1–2):81–110

    Article  Google Scholar 

  • Carrasco-Núñez G, Rose WI (1995) Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5–9.0 ka. J Volcanol Geotherm Res 69(3/4):197–215

    Article  Google Scholar 

  • Carrasco-Núñez G, Vallance JW, Rose WI (1993) A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 59(1/2):35–46

    Article  Google Scholar 

  • Centro Nacional de Prevención de Desastres (CENAPRED) (2001) Las cenizas volcánicas del Popocatépetl y sus efectos para la aeronavegación e infraestructura aeroportuaria. Instituto de Geofísica, UNAM, Mexico

    Google Scholar 

  • Cruden DM, Varnes D (1996) Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation. Transp Res Board, Spec Rep, 247, 36–75

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • De la Cruz-Reyna S, Carrasco-Núñez G (2002) Probabilistic hazard analysis of Citlaltépetl (Pico de Orizaba) Volcano, eastern Mexican Volcanic Belt. J Volcanol Geoth Res 113:307–318

    Article  Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2007) Comparing landslide inventory maps. Geomorphology 94:268–289

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for and old problem. Earth Sci Rev 112:42–66. doi:10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Hengl T (2006) Finding the right pixel size. Comput Geosci 32(9):1283–1298

    Article  Google Scholar 

  • Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 321–349

    Chapter  Google Scholar 

  • Hubbard BE, Sheridan MF, Carrasco-Nunez G, Díaz-Castellon R, Rodriguez S (2007) Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topography. J Volcanol Geoth Res 160(1):99–124

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI) (2000) Carta topográfica Orizaba E14B56. Escala 1:50000

    Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI) (2009). Uso del suelo y vegetación. Orizaba E14-6. Escala 1: 250, 000

    Google Scholar 

  • Kleinbaum DG, Klein M (2002) Logistic regression: a self-learning text, 2nd edn. Springer, New York

    Google Scholar 

  • Korup O, McSaveney MJ, Davies TR (2004) Sediment generation and delivery from large historic landslides in the Southern Alps New Zealand. Geomorphology 61(1/2):189–207

    Article  Google Scholar 

  • Legorreta PG, Bursik M (2009) Assessment of landslides susceptibility: LOGISNET: a tool for multimethod, multilayer slope stability analysis. ISBN: 9783639154771. Editor: VDM Verlag DR. Müller, USA, 360

  • Legorreta PG, Bursik M, Lugo HJ, Zamorano-Orozco JJ (2010) Effect of pixel size on cartographic representation of shallow and deep-seated landslide, and its collateral effects on the forecasting of landslides by SINMAP and multiple logistic regression landslide models. Phys Chem Earth 35:137–148

    Article  Google Scholar 

  • Macías JL (2005) Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana. Volumen Conmemorativo del Centenario Temas Selectos de la Geología Mexicana, LVII 3:379–424

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physical based model for the topographic control on shallow landslides. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Nadim F, Jaedicke C, Smebye H, Björn K (2013) Chapter 4. Assessment of global landslide hazard hotspots. In: Sassa et al (ed) Landslides: global risk preparedness, Springer, Heidelberg, 59–71, pp. 396, (in print)

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (2001) Assessing terrain stability in a GIS using SINMAP. In: Proceedings of the 15th Annual GIS Conference, Vancouver, British Columbia. http://hydrology.neng.usu.edu/sinmap/

  • Pallant J (2005) SPSS survival manual: a step by step guide to data analysis using SPSS for Windows (Version 12). Open University press, Buckingham, p 319

    Google Scholar 

  • Pérez-Gutiérrez R (2007) Análisis de la vulnerabilidad por los deslizamientos en masa, caso: Tlacuitlapa, Guerrero. Boletín de la Sociedad Geológica Mexicana 59(2):171–181

    Google Scholar 

  • Pringle PT, Brunego MJ (2004) Landslide zonation project. Level I of analysis. Bacon Creek watershed, Skagit County, Washington, Washington Department of Natural Resources. 11p., 1 plates, scale 1:24,000. http://www.dnr.wa.gov/BusinessPermits/Topics/LandslideHazardZonation/Pages/fp_lhz_completed.aspx. Accessed 1/02/2009

  • Secretaría de Protección Civil (2010) Atlas de peligros geológicos e hidrometeorológicos del estado de Veracruz. Comp.: Ignacio Mora González; Wendy Morales Barrera, Sergio Rodríguez Elizarrarás. Xalapa: Secretaría de Protección Civil del estado de Veracruz: Universidad Veracruzana: UNAM. 1 V

  • Servicio Geológico Mexicano (2001). Carta Geológico-Minera. Orizaba E14-6. Escala 1: 250 000

  • Sharikahn IY, Walsh T (2007) Mason Watershed. Landslide hazard zonation project. Mason County, Washington, Washington Department of Natural Resources. 138p., 1 plates, scale 1:24,000. http://www.dnr.wa.gov/BusinessPermits/Topics/LandslideHazardZonation/Pages/fp_lhz_completed.aspx. Accessed 1/02/2009

  • Sheridan MF, Carrasco-Nuñez G, Hubbard BE, Siebe C, Rodriguez-Elizarraraz S (2001) Mapa de peligros del Volcan Citlaltépetl (Pico de Orizaba), 1:250,000 scale, Univ Nac Autonoma Mexico

  • Siebe C, Komorowski JC, Sheridan MF (1992) Morphology and emplacement collapse of an unusual debris avalanche deposit at Jocotitlán Volcano Central Mexico. Bull. Volcanology 54:573–589

    Article  Google Scholar 

  • Siebe C, Abrams M, Sheridan MF (1993) Major holocene block-and-ash fan at the western slope of ice-capped Pico de Orizaba volcano, Mexico: implications for future hazards. J Volc Geotherm Res 59:1–33

    Article  Google Scholar 

  • Van Den Eeckhaunt M, Poesen J, Verstraeten G, Vanacker V, Moeyersons J, Nyssen J, Van Beek LPH (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67:351–363

    Article  Google Scholar 

  • Vaugeois LM (2003) Washington’s Statewide landslide inventory: first public draft. Paper 190–3. Seattle Annual Meeting, Nov 2–5, 2003. Accessed at https://gsa.confex.com/gsa/2003AM/finalprogram/session_9951.htm. Accessed 1/09/2013

  • Washington State Department of Natural Resources (DNR), Forest Practices Division (2006) Landslide Hazard Zonation (LHZ) Mapping Protocol, v2.0, WA DNR. Accessed 15/02/2007

  • Weirich F, Blesius L (2007) Comparison of satellite and air photo based landslide susceptibility maps. Geomorphology 87:352–364

    Article  Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide inventory map for hazard evaluation and reduction. Bull As Eng Geol 21:337–342

    Google Scholar 

Download references

Acknowledgments

The authors thank authorities from the Department of Geology at the University of Buffalo, the International Consortium on Landslides (ICL), the Washington State Department of Natural Resources (DNR) Forest Practices Division, the WA-DNR Geology and Earth Resources Division and the Geo-Spatial Analysis Laboratory from the Institute of Geography, UNAM for their approval and help. This research was supported by the program of Ciencia Básica SEP-CONACYT Grant # 167495 and the International Programme on Landslides (IPL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Legorreta Paulín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legorreta Paulín, G., Bursik, M., Hubp, J.L. et al. A GIS method for landslide inventory and susceptibility mapping in the Río El Estado watershed, Pico de Orizaba volcano, México. Nat Hazards 71, 229–241 (2014). https://doi.org/10.1007/s11069-013-0911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0911-8

Keywords

Navigation