Skip to main content

Advertisement

Log in

An operational flood warning system for poorly gauged basins: demonstration in the Guadalhorce basin (Spain)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This paper deals with the presentation of a flood warning system (GFWS) developed for the specific characteristics of the Guadalhorce basin (3,200 km2, SE of Spain), which is poorly gauged and often affected by flash and plain floods. Its complementarity with the European flood alert system (EFAS) has also been studied. At a lower resolution, EFAS is able to provide a flood forecast several days in advance. The GFWS is adapted to the use of distributed rainfall maps (such as radar rainfall estimates), and discharge forecasts are computed using a distributed rainfall–runoff model. Due to the lack of flow measurements, the model parameters calibrated on a small watershed have been transferred in most of the basin area. The system is oriented to provide distributed warnings and fulfills the requirements of ungauged basins. This work reports on the performance of the system on two recent rainfall events that caused several inundations. These results show how the GFWS performed well and was able to forecast the location and timing of flooding. It demonstrates that despite its limitations, a simple rainfall–runoff model and a relatively simple calibration could be useful for event risk management. Moreover, with low resolution and long anticipation, EFAS appears as a good complement tool to improve flood forecasting and compensate for the short lead times of the GFWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. French Meteorological Agency.

  2. Catalan Water Agency.

  3. Swiss Federal Research Institute.

  4. French Hydro-meteorological Nacional Center in charge of Flood Forecasting.

References

  • Alfieri L, Velasco D, Thielen J (2011) Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events. Adv Geosci 29:69–75

    Article  Google Scholar 

  • Atencia A, Rigo T, Sairouni A, Moré J, Bech J, Vilaclara E, Cunillera J, Llasat MC, Garrote L (2010) Improving QPF by blending techniques at the Meteorological Service of Catalonia. Nat Hazards Earth Syst Sci 10(7):1443–1455

    Article  Google Scholar 

  • Austin PM (1987) Relation between measured radar reflectivity and surface rainfall. Mon Weather Rev 115:1053–1070

    Article  Google Scholar 

  • Barredo JI (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42:125–148

    Article  Google Scholar 

  • Ben-Zvi A (2009) Rainfall intensity–duration–frequency relationships derived from large partial duration series. J Hydrol 367(1–2):104–114

    Article  Google Scholar 

  • Berenguer M, Corral C, Sánchez-Diezma R, Sempere-Torres D (2005) Hydrological validation of a radar-based nowcasting technique. J Hydrometeorol 6(4):532–549

    Article  Google Scholar 

  • Berne A, ten Heggeler M, Uijlenhoet R, Delobbe L, Dierickx P, de Wit M (2005) A preliminary investigation of radar rainfall estimation in the Ardennes region and a first hydrological application for the Ourthe catchment. Nat Hazards Earth Syst Sci 5:267–274

    Article  Google Scholar 

  • Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling: a review. Hydrol Process 9(3–4):251–290

    Article  Google Scholar 

  • Borga M (2008) Realtime guidance for flash flood risk management. FLOODsite report. T16-08-02. 86 pp

  • Borga M, Degli Esposti S, Norbiato D (2006) Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty. Water Resour Res 42(8):1–14

    Google Scholar 

  • Borga M, Boscolo P, Zanon F, Sangati M (2007) Hydrometeorological analysis of the August 29, 2003 flash flood in the eastern Italian Alps. J Hydrometeorol 8(5):1049–1067

    Article  Google Scholar 

  • Carpenter TM, Georgakakos KP (2006) Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. J Hydrol 329(1–2):174–185

    Article  Google Scholar 

  • Cole SJ, Moore RJ (2008) Hydrological modelling using raingauge-and radar-based estimators of areal rainfall. J Hydrol 358(3–4):159–181

    Article  Google Scholar 

  • Collier CG (2007) Flash flood forecasting: what are the limits of predictability? Q J R Meteorol Soc 133:3–23

    Article  Google Scholar 

  • Corral C, Sempere-Torres D, Revilla M, Berenguer M (2000) A semi-distributed hydrological model using rainfall estimates by radar. Application to Mediterranean basins. Phys Chem Earth Part B 25(10–12):1133–1136

    Article  Google Scholar 

  • Corral C, Berenguer M, Sempere-Torres D, Escaler I (2002) Evaluation of a conceptual distributed rainfall-runoff model in the Besòs catchment in Catalunya using radar information. Second European Conference on Radar Meteorology. European Meteorological Society, Delft, Netherlands, pp 409–415

    Google Scholar 

  • Corral C, Velasco D, Forcadell D, Sempere-Torres D, Velasco E (2009) Advances in radar-based flood warning systems The EHIMI system and the experience in the Besos flash-flood pilot basin. In: Samuels P, Huntington S, Allsop W, Harrop J (eds) Flood risk management: research and practice. Taylor & Francis Group, London

    Google Scholar 

  • Costa JE, Jarett RD (2008) An evaluation of selected extraordinary floods in the United States reported by the US, Geological Survey and implications for future advancement of flood science. Reston, Virginia

    Google Scholar 

  • Creutin J-D, Borga M (2003) Radar hydrology modifies the monitoring of flash flood hazard. Hydrol Process 17(7):1453–1456

    Article  Google Scholar 

  • Creutin JD, Borga M, Lutoff C, Scolobig A, Ruin I, Créton-Cazanave L (2009) Catchment dynamics and social response during flash floods: the potential of radar rainfall monitoring for warning procedures. Meteorol Appl 16(1):115–125

    Article  Google Scholar 

  • Delrieu G, Creutin JD, Andrieu H (1995) Simulation of radar mountain returns using a digitized terrain model. J Atmos Ocean Technol 12(5):1038–1049

    Article  Google Scholar 

  • Delrieu G, Braud I, Berne A, Borga M, Boudevillain B, Fabry F, Freer J, Gaume E, Nakakita E, Seed A, Tabary P, Uijlenhoet R (2009) Weather radar and hydrology. Adv Water Resour 32(7):969–974

    Article  Google Scholar 

  • Fabry F, Zawadzki I (1995) Long-term radar observations of the melting layer of precipitation and their interpretation. J Atmos Sci 52(7):838–851

    Article  Google Scholar 

  • Francés F, Benito J (1995) La modelización ditribuida con pocos parametros de las crecidas. Ingenieria del Agua 2(4):7–24

    Google Scholar 

  • Franco M (2008) Estimación cuantitativa de la lluvia mediante radar meteorológico. Corrección del error asociado a la variación vertical de la reflectividad, Universitat Politècnica de Catalunya, Barcelona, Spain, 251p

  • Franco M, Sanchez-Diezma R, Sempere-Torres D (2006) Improvements in weather radar rain rate estimates using a method for identifying the vertical profile of reflectivity from volume radar scans. Meteorol Z 15(5):521–536

    Article  Google Scholar 

  • Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Blaskovicov L, Blöschl G, Borga M, Dumitrescu A, Daliakopoulos I, Garcia J, Irimescu A, Kohnova S, Koutroulis A, Marchi L, Matreata S, Medina V, Preciso E, Sempere-Torres D, Stancalie G, Szolgay J, Tsanis I, Velasco D, Viglione A (2009) A compilation of data on European flash floods. J Hydrol 367(1–2):70–78

    Article  Google Scholar 

  • Georgakakos KP (2006) Analytical results for operational flash flood guidance. J Hydrol 317(1–2):81–103

    Article  Google Scholar 

  • Germann U, Berenguer M, Sempere-Torres D, Zappa M (2009) REAL—ensemble radar precipitation estimation for hydrology in a mountainous region. Q J R Meteorol Soc 135(639):445–456

    Article  Google Scholar 

  • Hajat S, Ebi KL, Kovats S, Menne B, Edwards S, Haines A (2003) The human health consequences of flooding in Europe and the implications for public health: a review of the evidence. Appl Environ Sci Public Health 1:13–21

    Google Scholar 

  • IACOW (1982) Guidelines for determining flood flow frequency. Bulletin 17B of the Hydrology Subcommittee. US Geological Survey, Reston, VA

  • Jasper K, Gurtz J, Lang H (2002) Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J Hydrol 267(1–2):40–52

    Article  Google Scholar 

  • Javelle P, Fouchier C, Arnaud P, Lavabre J (2010) Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations. J Hydrol 394(1–2):267–274

    Article  Google Scholar 

  • Joss J, Waldvogel A (1990) Precipitation measurement and hydrology. In: Atlas D (ed) Radar in meteorology. American Meteorological Society, Boston, pp 577–606

    Google Scholar 

  • Lavabre J, Gregoris Y (2006) AIGA: un dispositif d’alerte des crues. Application à la région méditerranéenne française, Fifth FRIEND World Conference. IAHS, Havana, Cuba, pp 214–219

  • Li PW, Lai EST (2004) Short-range quantitative precipitation forecasting in Hong Kong. J Hydrol 288(1–2):189–209

    Article  Google Scholar 

  • Lin C, Vasi S, Kilambi A, Turner B, Zawadzki I (2005) Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys Res Lett 32(14):L14801

    Google Scholar 

  • Meon G (2006) Past and present challenges in flash flood forecasting. First International Workshop on Flash Flood Forecasting, San Jose, Costa Rica, pp 2

  • Merz R, Blöschl G (2009) A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resour Res 45(1):W01405

    Google Scholar 

  • Mockus V (1957) Use of storm and watersheds characteristics in synthetic hydrograph analysis and application. Soil Conservation Service. U.S. Dept. of Agriculture, Washington

    Google Scholar 

  • MOPU (1990) Norma 5.2-IC, drenaje superficial: instrucción de carreteras. Ministerio de Obras Públicas y Urbanismo, Dirección General de Carreteras, Madrid

  • MOPU (1999) Máximas Lluvias de la España peninsular. Ministerio de Obras Públicas y Urbanismo, Dirección General de Carreteras, Madrid

  • Moulin L, Gaume E, Obled C (2009) Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations. Hydrol Earth Syst Sci 13(2):99–114

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Norbiato D, Borga M, Sangati M, Zanon F (2007) Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. J Hydrol 345:149–166

    Article  Google Scholar 

  • Norbiato D, Borga M, Degli Esposti S, Gaume E, Anquetin S (2008) Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. J Hydrol 362(3–4):274–290

    Article  Google Scholar 

  • Perrin C, Michel C, Andréassian V (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol 242(3–4):275–301

    Article  Google Scholar 

  • Reed S, Koren V, Smith M, Zhang Z, Moreda F, Seo D-J, Participants D (2004) Overall distributed model intercomparison project results. J Hydrol 298(1–4):27–60

    Article  Google Scholar 

  • Reed S, Schaake J, Zhang Z (2007) A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J Hydrol 337(3–4):402–420

    Article  Google Scholar 

  • Rossa A, Bruen M, Fruehwald D, Macpherson B, Holleman I, Michelson D, Michaelides S (2005) Use of radar observations in hydrology and NWP models, Brussels. 292 pp

  • Rozalis S, Morin E, Yair Y, Price C (2010) Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J Hydrol 394(1–2):245–255

    Article  Google Scholar 

  • Sánchez-Diezma R, Sempere-Torres D, Delrieu G, Zawadzki I (2001) An improved methodology for ground clutter substitution based on a pre-classification of precipitation types. 30th international conference on radar meteorology. American meteorological society, Munich, Germany, pp 271–273

  • Schiemann R, Liniger MA, Frei C (2010) Reduced space optimal interpolation of daily rain gauge precipitation in Switzerland. J Geophys Res 115(14):D14109

    Article  Google Scholar 

  • Sempere-Torres D, Corral C, Raso J, Malgrat P (1999) Use of weather radar for combined sewer overflows monitoring and control. J Environ Eng 125:372–380

    Article  Google Scholar 

  • Siccardi F, Boni G, Ferraris L, Rudari R (2005) A hydrometeorological approach for probabilistic flood forecast. J Geophys Res 110:D05101

    Google Scholar 

  • Szymkiewicz R (2002) An alternative IUH for the hydrological lumped models. J Hydrol 259(1–4):246–253

    Article  Google Scholar 

  • Tanguy J-M, Carriere J-M, le Trionnaire Y, Schoen R (2005) Réorganisation de l’annonce des crues en France. La Houille Blanche 2:44–48

    Article  Google Scholar 

  • Thielen J, Bartholmes J, Ramos M-H, de Roo A (2009) The European flood alert system—Part 1: concept and development. Hydrol Earth Syst Sci 13(2):125–140

    Article  Google Scholar 

  • Todini E (1988) Rainfall-runoff modeling—past, present and future. J Hydrol 100(1–3):341–352

    Article  Google Scholar 

  • Van Der Knijff JM, Younis J, De Roo APJ (2010) LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int J Geogr Inf Sci 24(2):189–212

    Article  Google Scholar 

  • Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gómez-Hernández JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32:986–1002

    Article  Google Scholar 

  • Versini P-A (2012) Use of radar rainfall estimates and forecasts to prevent flash flood in real time by using a road inundation warning system. J Hydrol 416–417:157–170

    Article  Google Scholar 

  • Versini P-A, Gaume E, Andrieu H (2010) Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas. Nat Hazards Earth Syst Sci 10(4):805–817

    Article  Google Scholar 

  • Versini P-A, Velasco M, Cabello A, Sempere-Torres D (2013) Hydrological impact of forest fires and climate change in a Mediterranean basin. Nat Hazards 66(20):609–628

    Article  Google Scholar 

  • Viviroli D, Zappa M, Gurtz J, Weingartner R (2009) An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ Model Softw 24(10):1209–1222

    Article  Google Scholar 

  • Vivoni ER, Entekhabi D, Bras RL, Ivanov VY, Van Horne MP, Grassotti C, Hoffman RN (2006) Extending the predictability of hydrometeorological flood events using radar rainfall nowcasting. J Hydrometeorol 7(4):660–677

    Article  Google Scholar 

  • Weeks WD, Boughton WC (1987) Tests of ARMA model forms for rainfall-runoff modelling. J Hydrol 91(1–2):29–47

    Article  Google Scholar 

  • Wright DB, Smith JA, Villarini G, Baeck ML (2013) Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition. J Hydrol 488:150–165

    Google Scholar 

  • Zappa M, Beven KJ, Bruen M, Cofiño AS, Kok K, Martin E, Nurmi P, Orfila B, Roulin E, Schröter K, Seed A, Szturc J, Vehviläinen B, Germann U, Rossa A (2010) Propagation of uncertainty from observing systems and NWP into hydrological models: COST-731 Working Group 2. Atmos Sci Lett 11(2):83–91

    Article  Google Scholar 

  • Zappa M, Jaun S, Germann U, Walser A, Fundel F (2011) Superposition of three sources of uncertainties in operational flood forecasting chains. Atmos Res 100(2–3):246–262

    Article  Google Scholar 

  • Zawadzki I (1984) Factors affecting the precision of radar measurements of rain. Conference on Radar Meteorology 22nd. American Meteorological Society, Zurich, Switzerland, pp 251–256

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Red HIDROSUR (Southern Andalusia Hydrological Network) and the AEMET (Spanish Meteorological Agency) for providing historical hydrometeorological data on the Guadalhorce basin. We would also like to thank the Joint Research Centre (JRC) for providing preliminary EFAS outputs for the studied cases. This work has been carried out within the European 7th FP project IMPRINTS (http://www.imprints-fp7.eu) and the Spanish projects FFGRad (CGL2009-13139) and ProFEWS (CGL2010-15892), and has been supported by the environmental management company EGMASA (currently, Agencia de Medio Ambiente y Agua de Andalucía, Consejería de Medio Ambiente—Junta de Andalucía). The second author is supported by a Ramón y Cajal grant of the Spanish Ministry of Science and Innovation (RYC2010-06521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-A. Versini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Versini, PA., Berenguer, M., Corral, C. et al. An operational flood warning system for poorly gauged basins: demonstration in the Guadalhorce basin (Spain). Nat Hazards 71, 1355–1378 (2014). https://doi.org/10.1007/s11069-013-0949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0949-7

Keywords

Navigation