Skip to main content

Advertisement

Log in

Quantitative analysis of seismic velocity tomography in rock burst hazard assessment

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In order to quantitatively evaluate the relationship between the tomographic images of P wave velocity and rock burst hazard, the seismic velocity tomography was used to generate the P wave velocity tomograms during the retreat of a longwall panel in a coal mine. Subsequently, a novel index (bursting strain energy) was proposed to characterize the mining seismic hazard map. Finally, the structural similarity (SSIM) index in the discipline of image quality assessment was introduced to quantitatively assess the relation between the bursting strain energy index images and the tomographic images of P wave velocity. The results show that the bursting strain energy index is appropriate for quantitative analysis and seems to be better for expressing the mining seismic hazard than the conventional map. The SSIM values of the future bursting strain energy compared with the P wave velocity and the current bursting strain energy reach up to 0.8908 and 0.8462, respectively, which illustrate that the P wave velocity and the bursting strain energy both are able to detect the rock burst hazard region. Specifically, seismic velocity tomography is superior to the bursting strain energy index in the detection range and the precision and accuracy of detection results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amitrano D (2012) Variability in the power-law distributions of rupture events. Eur Phys J Spec Top 205:199–215. doi:10.1140/epjst/e2012-01571-9

    Article  Google Scholar 

  • Bańka P, Jaworski A (2010) Possibility of more precise analytical prediction of rock mass energy changes with the use of passive seismic tomography readings. Arch Min Sci 55:723–731

    Google Scholar 

  • Benioff H (1951) Crustal strain characteristics derived from earthquake sequences. Trans Am Geophys Union 32:508–514

    Article  Google Scholar 

  • Bräuner G (1994) Rockbursts in coal mines and their prevention. AA Balkema, Rotterdam

    Google Scholar 

  • Dou L, Chen T, Gong S, He H, Zhang S (2012a) Rockburst hazard determination by using computed tomography technology in deep workface. Saf Sci 50:736–740. doi:10.1016/j.ssci.2011.08.043

    Article  Google Scholar 

  • Dou L, He J, Gong S, Song Y, Liu H (2012b) A case study of micro-seismic monitoring: goaf water-inrush dynamic hazards. J China Univ Min Technol 41:20–25

    Google Scholar 

  • Dou L, Cai W, Gong S, Han R, Liu J (2014) Dynamic risk assessment of rock burst based on the technology of seismic computed tomography detection. J China Coal Soc 39:238–244. doi:10.13225/j.cnki.jccs.2013.2016

    Google Scholar 

  • Eberhart-Phillips D, Han D-H, Zoback MD (1989) Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics 54:82–89. doi:10.1190/1.1442580

    Article  Google Scholar 

  • Filimonov Y, Lavrov A, Shkuratnik V (2005) Effect of confining stress on acoustic emission in ductile rock. Strain 41:33–35. doi:10.1111/j.1475-1305.2004.00182.x

    Article  Google Scholar 

  • Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8–21. doi:10.1785/gssrl.66.4.8

    Article  Google Scholar 

  • Frankel A et al (2000) USGS national seismic hazard maps. Earthq Spectra 16:1–19. doi:10.1193/1.1586079

    Article  Google Scholar 

  • Friedel M, Jackson M, Scott D, Williams T, Olson M (1995) 3-D tomographic imaging of anomalous conditions in a deep silver mine. J Appl Geophys 34:1–21. doi:10.1016/0926-9851(95)00007-O

    Article  Google Scholar 

  • Friedel M, Scott D, Williams T (1997) Temporal imaging of mine-induced stress change using seismic tomography. Eng Geol 46:131–141. doi:10.1016/S0013-7952(96)00107-X

    Article  Google Scholar 

  • Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36:105–117. doi:10.1016/0022-5193(72)90180-4

    Article  Google Scholar 

  • Gong S (2010) Research and application of using mine tremor velocity tomography to forecast rockburst danger in coal mine. China University of Mining and Technology, Xuzhou, China

    Google Scholar 

  • Gong S, Dou L, Cao A, He H, Du T, Jiang H (2010) Study on optimal configuration of seismological observation network for coal mine. Chinese J Geophys-CH 53:457–465. doi:10.3969/j.issn.0001-5733.2010.02.025

    Google Scholar 

  • Gong S, Dou L, He J, He H, Lu C, Mu Z (2012a) Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment. Rock and Soil Mech 33:41–47

    Google Scholar 

  • Gong S, Dou L, Xu X, He J, Lu C, He H (2012b) Experimental study on the correlation between stress and P-wave velocity for burst tendency coal-rock samples. J Min Saf Eng 29:67–71

    Google Scholar 

  • Hardy Jr HR (2003) Acoustic emission/microseismic activity: volume 1: principles, techniques and geotechnical applications. Taylor & Francis

  • He H, Dou L, Li X, Qiao Q, Chen T, Gong S (2011) Active velocity tomography for assessing rock burst hazards in a kilometer deep mine. Min Sci Technol 21:673–676. doi:10.1016/j.mstc.2011.10.003

    Google Scholar 

  • Hosseini N, Oraee K, Shahriar K, Goshtasbi K (2012a) Passive seismic velocity tomography and geostatistical simulation on longwall mining panel. Arch Min Sci 57:139–155. doi:10.2478/v10267-012-0010-9

    Google Scholar 

  • Hosseini N, Oraee K, Shahriar K, Goshtasbi K (2012b) Passive seismic velocity tomography on longwall mining panel based on simultaneous iterative reconstructive technique (SIRT). J Cent South Univ 19:2297–2306. doi:10.1007/s11771-012-1275-z

    Article  Google Scholar 

  • Hosseini N, Oraee K, Shahriar K, Goshtasbi K (2013) Studying the stress redistribution around the longwall mining panel using passive seismic velocity tomography and geostatistical estimation. Arab J Geosci 6:1407–1416. doi:10.1007/s12517-011-0443-z

    Article  Google Scholar 

  • Jiang Y, Pan Y, Jiang F, Dou L, Ju Y (2014) State of the art review on mechanism and prevention of coal bumps in China. J China Coal Soc 39:205–213. doi:10.13225/j.cnki.jccs.2013.0024

    Google Scholar 

  • Kornowski J, Kurzeja J (2012) Prediction of rockburst probability given seismic energy and factors defined by the expert method of hazard evaluation (MRG). Acta Geophys 60:472–486. doi:10.2478/s11600-012-0002-3

    Article  Google Scholar 

  • Kracke DW, Heinrich R (2004) Local seismic hazard assessment in areas of weak to moderate seismicity-case study from Eastern Germany. Tectonophysics 390:45–55. doi:10.1016/j.tecto.2004.03.023

    Article  Google Scholar 

  • Luo X, King A, Van de Werken M (2009) Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source—a feasibility study. IEEE Trans Geosci Remote Sens 47:3671–3678. doi:10.1109/tgrs.2009.2018445

    Article  Google Scholar 

  • Lurka A (2008) Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography. J China Univ Min Technol 18:177–181. doi:10.1016/S1006-1266(08)60038-3

    Article  Google Scholar 

  • Luxbacher KD (2008) Time-lapse passive seismic velocity tomography of longwall coal mines: a comparison of methods. Virginia Polytechnic Institute and State University, Blacksburg, Virginia

    Google Scholar 

  • Luxbacher K, Westman E, Swanson P, Karfakis M (2008) Three-dimensional time-lapse velocity tomography of an underground longwall panel. Int J Rock Mech Min Sci 45:478–485. doi:10.1016/j.ijrmms.2007.07.015

    Article  Google Scholar 

  • Meglis I, Chow T, Martin C, Young R (2005) Assessing in situ microcrack damage using ultrasonic velocity tomography. Int J Rock Mech Min Sci 42:25–34. doi:10.1016/j.ijrmms.2004.06.002

    Article  Google Scholar 

  • Mitra R, Westman E (2009) Investigation of the stress imaging in rock samples using numerical modeling and laboratory tomography. Int J Geotech Eng 3:517–525

    Article  Google Scholar 

  • Nur A, Simmons G (1969) Stress-induced velocity anisotropy in rock: an experimental study. J Geophys Res 74:6667–6674. doi:10.1029/JB074i027p06667

    Article  Google Scholar 

  • Scholz C (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. B Seismol Soc Am 58:399–415

    Google Scholar 

  • Tang LZ, Xia KW (2010) Seismological method for prediction of areal rockbursts in deep mine with seismic source mechanism and unstable failure theory. J Cent South Univ T 17:947–953. doi:10.1007/s11771-010-0582-5

    Article  Google Scholar 

  • Tang C, Wang J, Zhang J (2011) Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project. J Rock Mech and Geotech Eng 2:193–208

    Google Scholar 

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE T Image Process 13:600–612. doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  • Wang S, Mao D, Du T, Chen F, Feng M (2012) Rockburst hazard evaluation model based on seismic CT technology. J China Coal Soc 37:1–6

    Article  Google Scholar 

  • Westman EC (2004) Use of tomography for inference of stress redistribution in rock. IEEE T Ind Appl 40(1413–1417):2004. doi:10.1109/TIA.834133

    Google Scholar 

Download references

Acknowledgments

The Institute of Rock Pressure (Henan Dayou Energy Limited Company) and the Yuejin coal mine provided the microseismic data. In particular, we would like to extend a special thanks to Dr. Li Xuwei, Dr. Qiao qiuqiu, and two reviewers for their useful comments and constructive suggestions, which greatly improved the quality of this manuscript. We gratefully acknowledge the financial support for this work provided by the National Natural Science Foundation of China (51174285, 51204165), the National Basic Research Program of China (2010CB226805), the Jiangsu Natural Science Foundation (BK20130183), and the Projects supported by the Priority Academic Program Development of Jiangsu Higher Education Institution (SZBF2011-6-B35).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linming Dou or Siyuan Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Dou, L., Gong, S. et al. Quantitative analysis of seismic velocity tomography in rock burst hazard assessment. Nat Hazards 75, 2453–2465 (2015). https://doi.org/10.1007/s11069-014-1443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1443-6

Keywords

Navigation