Skip to main content
Log in

3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Flow-type landslide, such as debris-flow, often exhibits high velocity and long run-out distance. Simulation on it benefits the propagation analysis and provides solution for risk assessment and mitigation design. Previous studies commonly used shallow water assumption to simulate this phenomenon, ignoring the information in vertical direction, and the Bingham model to describe constitutive law of non-Newtonian fluid can cause numerical divergence unless necessary parameter is defined. To address the issue, the full Navier–Stokes equations are adopted to describe the dynamics of the flow-type landslides. Additionally, the general Cross model is employed as the constitutive model, which ensures the numerical convergence. Rheological parameters are introduced from the Bingham model and the Mohr–Coulomb yield criterion. Subsequently, the governing equations incorporating the modified rheological model are numerically built in the smoothed particle hydrodynamics (SPH) framework and implemented into the open-source DualSPHysics code. To illustrate its performance, the 2010 Yohutagawa debris-flow event in Japan is selected as a case study. Parameters regarding the debris magnitude, i.e., the front velocity and section discharge, were also well analyzed. Simulated mass volume and deposition depth at the alluvial fan are in good agreements with the in situ observation. On the basis of the results, the developed method performs well to reproduce the debris-flow process and also benefits the analysis of flow characteristics, affected area for risk assessment and mitigation design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ancey C (2007) Plasticity and geophysical flows: a review. J Nonnewton Fluid Mech 142:4–35. doi:10.1016/j.jnnfm.2006.05.005

    Article  Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Rheology series 3. Elsevier, Oxford

    Google Scholar 

  • Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90:144–161. doi:10.1016/j.geomorph.2007.01.014

    Article  Google Scholar 

  • Berti M, Genevois R, Simoni A, Tecca PR (1999) Field observations of a debris flow event in the Dolomites. Geomorphology 29:265–274. doi:10.1016/S0169-555x(99)00018-5

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2012) Modeling of propagation and entrainment phenomena for landslides of the flow-type: the May 1998 case study. In: Proceedings of 11th international symposium on landslides: landslides and engineered slopes, Banf, Canada June, 2012. pp 3–8

  • Cascini L, Cuomo S, Pastor M (2013) Inception of debris avalanches: remarks on geomechanical modelling. Landslides 10:701–711. doi:10.1007/s10346-012-0366-0

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2014) SPH run-out modelling of channelised landslides of the flow-type. Geomorphology 214:502–513. doi:10.1016/j.geomorph.2014.02.031

    Article  Google Scholar 

  • Chen H, Lee C (2000) Numerical simulation of debris flows. Can Geotech J 37:146–160. doi:10.1139/Cgj-37-1-146

    Article  Google Scholar 

  • Cola S, Calabrò N, Pastor M (2008) Prediction of the flow-like movements of Tessina landslide by SPH model. In: Proceedings of the 10th international symposium on landslide and engineering slopes, Xi’an, China, 2008. pp 647–653

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Crespo A, Dominguez J, Rogers B, Gomez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, Garcia-Feal O (2015) DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Comm 187:204–216

    Article  Google Scholar 

  • Crespo AC, Dominguez JM, Barreiro A, Gómez-Gesteira M, Rogers BD (2011) GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS One 6:e20685. doi:10.1371/journal.pone.0020685

    Article  Google Scholar 

  • Crosta G, Dal Negro P (2003) Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Nat Hazards Earth Syst Sci 3:53–69

    Article  Google Scholar 

  • Cuomo S, Pastor M, Cascini L, Castorino GC (2014) Interplay of rheology and entrainment in debris avalanches: a numerical study. Can Geotech J 51:1318–1330. doi:10.1139/cgj-2013-0387

    Article  Google Scholar 

  • Dai Z, Huang Y, Cheng H, Xu Q (2014) 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Eng Geol 180:21–33. doi:10.1016/j.enggeo.2014.03.018

    Article  Google Scholar 

  • Dalrymple R, Rogers B (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53:141–147. doi:10.1016/j.coastaleng.2005.10.004

    Article  Google Scholar 

  • Fannin R, Wise M (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38:982–994

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:99–111

    Article  Google Scholar 

  • Frigaard I, Nouar C (2005) On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J Nonnewton Fluid Mech 127:1–26. doi:10.1016/j.jnnfm.2005.01.003

    Article  Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  Google Scholar 

  • Gotoh H, Shao S, Memita T (2004) SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater. Coast Eng J 46:39–63. doi:10.1142/S0578563404000872

    Article  Google Scholar 

  • Hadush S, Yashima A, Uzuoka R (2000) Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis. Comput Geotech 27:199–224. doi:10.1016/S0266-352x(00)00015-X

    Article  Google Scholar 

  • Hammad K, Vradis G (1994) Flow of a non-Newtonian Bingham plastic through an axisymmetric sudden contraction: effects of Reynolds and yield numbers. Numer Method Non-Newton Fluid Dyn ASME 179:63-69

    Google Scholar 

  • Han Z, Chen G, Li Y, Zheng L, Zhang Y, Xu L (2013) A numerical simulation of volumetric enlargement for seismic debris flow using integrated DDA and KANAKO 2D. In: Frontiers of Discontinuous Numerical Methods and Practical Simulations in Engineering and Disaster Prevention. CRC Press, pp 281–287

  • Han Z, Chen G, Li Y, Xu L, Zheng L, Zhang Y (2014a) A new approach for analyzing the velocity distribution of debris flows at typical cross-sections. Nat Hazards 74:2053–2070. doi:10.1007/s11069-014-1276-3

    Article  Google Scholar 

  • Han Z, Chen G, Li Y, Zhang H, He Y (2014b) Elementary analysis on the bed-sediment entrainment by debris flow and its application using the TopFlowDF model. Geomat Nat Hazards Risk. doi:10.1080/19475705.2014.966868

    Google Scholar 

  • Han Z, Chen G, Li Y, Tang C, Xu L, He Y, Huang X, Wang W (2015) Numerical simulation of debris-flow behavior incorporating a dynamic method for estimating the entrainment. Eng Geol 190:52–64. doi:10.1016/j.enggeo.2015.02.009

    Article  Google Scholar 

  • Hosseini S, Manzari M, Hannani S (2007) A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow. Int J Numer Meth Heat Fluid Flow 17:715–735. doi:10.1108/09615530710777976

    Article  Google Scholar 

  • Huang Y, Dai Z (2014) Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method. Eng Geol 168:86–97. doi:10.1016/j.enggeo.2013.10.022

    Article  Google Scholar 

  • Huang Y, Zhang W, Mao W, Jin C (2011) Flow analysis of liquefied soils based on smoothed particle hydrodynamics. Nat Hazards 59:1547–1560. doi:10.1007/s11069-011-9851-3

    Article  Google Scholar 

  • Huang Y, Zhang W, Xu Q, Xie P, Hao L (2012) Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9:275–283. doi:10.1007/s10346-011-0285-5

    Article  Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992. doi:10.1016/j.cageo.2007.12.003

    Article  Google Scholar 

  • Hungr O, Evans S, Bovis M, Hutchinson J (2001) A review of the classification of landslides of the flow-type. Environ Eng Geosci 7:221–238

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. doi:10.1029/97rg00426

    Article  Google Scholar 

  • Jakob M (2005) Debris-flow hazard analysis. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 411–443

    Chapter  Google Scholar 

  • Komatina D, Jovanovic M (1997) Experimental study of steady and unsteady free surface flows with water-clay mixtures. J Hydraul Res 35:579–590

    Article  Google Scholar 

  • Laigle D, Lachamp P, Naaim M (2007) SPH-based numerical investigation of mudflow and other complex fluid flow interactions with structures. Comput Geosci 11:297–306. doi:10.1007/s10596-007-9053-y

    Article  Google Scholar 

  • Lee E-S, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227:8417–8436. doi:10.1016/j.jcp.2008.06.005

    Article  Google Scholar 

  • Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76. doi:10.1007/s11831-010-9040-7

    Article  Google Scholar 

  • Liu X, Lin P, Shao S (2014) An ISPH simulation of coupled structure interaction with free surface flows. J Fluids Struct 48:46–61. doi:10.1016/j.jfluidstructs.2014.02.002

    Article  Google Scholar 

  • Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  • Major JJ (1997) Depositional processes in large-scale debris-flow experiments. J Geol 105:345–366

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097. doi:10.1139/T04-052

    Article  Google Scholar 

  • Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142. doi:10.1007/s10346-007-0102-3

    Article  Google Scholar 

  • Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180:861–872. doi:10.1016/j.cpc.2008.12.004

    Article  Google Scholar 

  • Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48:89–96. doi:10.1016/0010-4655(88)90026-4

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574. doi:10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  • Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226. doi:10.1006/jcph.1997.5776

    Article  Google Scholar 

  • Naili M, Matsushima T, Yamada Y (2005) A 2D Smoothed Particle Hydrodynamics method for liquefaction induced lateral spreading analysis. J Appl Mech 8:591–599

    Article  Google Scholar 

  • O’brien J, Julien P, Fullerton W (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244–261

    Article  Google Scholar 

  • Osozawa S, Morimoto J, Flower MF (2009) “Block-in-matrix” fabrics that lack shearing but possess composite cleavage planes: a sedimentary mélange origin for the Yuwan accretionary complex in the Ryukyu island arc, Japan. Geol Soc Am Bull 121:1190–1203

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Meth Geomech 33:143–172. doi:10.1002/nag.705

    Article  Google Scholar 

  • Pastor M et al (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11:1–20. doi:10.1007/s10346-014-0484-y

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77. doi:10.1023/A:1008064220727

    Article  Google Scholar 

  • Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf Proc Land 35:157–173. doi:10.1002/esp.1897

    Google Scholar 

  • Shao S (2010) Incompressible SPH flow model for wave interactions with porous media. Coast Eng 57:304–316. doi:10.1016/j.coastaleng.2009.10.012

    Article  Google Scholar 

  • Shao S, Lo EY (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26:787–800. doi:10.1016/S0309-1708(03)00030-7

    Article  Google Scholar 

  • Sosio R, Crosta G, Frattini P (2007) Field observations, rheological testing and numerical modelling of a debris-flow event. Earth Surf Proc Land 32:290–306. doi:10.1002/esp.1391

    Article  Google Scholar 

  • Takahashi T, Nakagawa H, Harada T, Yamashiki Y (1992) Routing debris flows with particle segregation. J Hydraul Eng 118:1490–1507. doi:10.1061/(Asce)0733-9429(1992)118:11(1490)

    Article  Google Scholar 

  • Tang C, Rengers N, van Asch TW, Yang Y, Wang G (2011) Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China. Nat Hazards Earth Syst Sci 11:2903–2912. doi:10.5194/nhess-11-2903-2011

    Article  Google Scholar 

  • Wang G, Sassa K, Fukuoka H (2003) Downslope volume enlargement of a debris slide–debris flow in the 1999 Hiroshima, Japan, rainstorm. Eng Geol 69:309–330. doi:10.1016/S0013-7952(02)00289-2

    Article  Google Scholar 

  • WU J, Chen G, Zheng L, Zhang Y (2013) GIS-based numerical modelling of debris flow motion across three-dimensional terrain. J Mt Sci 10:522–531. doi:10.1007/s11629-013-2486-y

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the DualSPHysics team who developed the open-source SPH code and provided it to the public. This study has received support from Kyushu University Interdisciplinary Programs in Education and Projects in Research Development and Grant-in-Aid for challenging Exploratory Research (15K12483, G. Chen) from Japan Society for the Promotion of Science. Also, this work was supported by the Foundation of State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (SKLGP2015K008). Finally, the authors greatly appreciate the careful review and thoughtful suggestions by the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, G., Han, Z. et al. 3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior. Nat Hazards 81, 1981–1998 (2016). https://doi.org/10.1007/s11069-016-2171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2171-x

Keywords

Navigation