Skip to main content

Advertisement

Log in

Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In this paper, we present a novel classifier ensemble method, namely Rotation Forest fuzzy rule-based Classifier Ensemble (RFCE), for spatial prediction of landslides. An area located in the Uttarakhand State in India has been taken as a case study. RFCE is a hybrid method of rotation forest ensemble and fuzzy unordered rules induction algorithm classifier. Both are the current state-of-the-art techniques which have been seldom used for spatial prediction of landslides. A dataset has been generated for this study including landslide inventory map (930 landslide locations) and fifteen landslide influencing factors such as slope angle, slope aspect, elevation curvature, plan curvature, profile curvature, soil types, land cover, rainfall, distance to lineaments, distance to roads, distance to rivers, lineament density, road density, and river density. Performance of the RFCE model has been evaluated using statistical index-based evaluations and receiver operating characteristic curve technique. Additionally, other ensemble techniques, such as AdaBoost, Bagging, MultiBoost, and other classifiers, namely Support Vector Machines (SVM) and Fuzzy Unordered Rules Induction Algorithm (FURIA), have been taken into account for comparison. Overall, the performance of the RFCE model is well within spatial prediction of landslides (AUC = 0.896). It improved significantly the predictive capability of a base classifier of the FURIA model (AUC = 0.865). Its performance is even better than the AdaBoost model (AUC = 0.874) and almost same as the MultiBoost model (AUC = 0.901) and the SVM model (AUC = 0.901). However, it falls behind the Bagging model (AUC = 0.912). The present study indicates that RFCE is an encouraging method that can be used for spatial prediction of landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agarwal N, Kumar G (1973) Geology of the upper Bhagirathi and Yamuna valleys, Uttarkashi district, Kumaun Himalaya. Himal Geol 3:2–23

    Google Scholar 

  • Aksoy B, Ercanoglu M (2012) Landslide identification and classification by object-based image analysis and fuzzy logic: an example from the Azdavay region (Kastamonu, Turkey). Comput Geosci 38:87–98. doi:10.1016/j.cageo.2011.05.010

    Article  Google Scholar 

  • Alfaro E, García N, Gámez M, Elizondo D (2008) Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks. Decis Support Syst 45:110–122. doi:10.1016/j.dss.2007.12.002

    Article  Google Scholar 

  • Alkhasawneh M, Sh Ngah UK, Tay LT, Isa NAM, Al-Batah MS (2014) Modeling and testing landslide hazard using decision tree. J Appl Math. doi:10.1155/2014/929768

    Google Scholar 

  • Althuwaynee OF, Pradhan B, Park H-J, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 114:21–36. doi:10.1016/j.catena.2013.10.011

    Article  Google Scholar 

  • Atkinson PM, Massari R (2011) Autologistic modelling of susceptibility to landsliding in the Central Apennines, Italy. Geomorphology 130:55–64. doi:10.1016/j.geomorph.2011.02.001

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81. doi:10.1007/s10346-003-0006-9

    Article  Google Scholar 

  • Bai S, Lü G, Wang J, Zhou P, Ding L (2011) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62:139–149. doi:10.1007/s12665-010-0509-3

    Article  Google Scholar 

  • Bartarya S, Virdi N, Sah M (1996) Landslide hazards: some case studies from the Satluj Valley, Himachal Pradesh. Himal Geol 17:193–207

    Google Scholar 

  • Brank J, Grobelnik M, Milic-Frayling N, Mladenic D (2002) Feature selection using linear support vector machines. In: Proceedings of the third international conference on data mining methods and databases for engineering, finance and other fields, Bologna, Italy

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140. doi:10.1007/BF00058655

    Google Scholar 

  • Brewer CA (2006) Basic mapping principles for visualizing cancer data using geographic information systems (GIS). Am J Prev Med 30:S25–S36. doi:10.1016/j.amepre.2005.09.007

    Article  Google Scholar 

  • Canuti P, Casagli N, Ermini L, Fanti R, Farina P (2004) Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environ Geol 45:907–919. doi:10.1007/s00254-003-0952-5

    Article  Google Scholar 

  • Carrara A, Catalano E, Sorriso-Valvo M, Reali C, Osso I (1978) Digital terrain analysis for land evaluation. Geologia Applicata e Idrogeologia 13:69–127

    Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962. doi:10.1007/s00254-003-0838-6

    Article  Google Scholar 

  • Choi J, Oh H-J, Lee H-J, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23. doi:10.1016/j.enggeo.2011.09.011

    Article  Google Scholar 

  • Cohen WW (1995) Fast effective rule induction. In: Proceedings of the twelfth international conference on machine learning, pp 115–123

  • Conforti M, Pascale S, Robustelli G, Sdao F (2014) Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 113:236–250. doi:10.1016/j.catena.2013.08.006

    Article  Google Scholar 

  • Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M (2014) Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology 204:399–411. doi:10.1016/j.geomorph.2013.08.021

    Article  Google Scholar 

  • Dai F, Lee C (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228. doi:10.1016/S0169-555X(01)00087-3

    Article  Google Scholar 

  • Dietterich TG (2000) Ensemble methods in machine learning. In: Kittler J, Roli F (eds) Multiple classifier systems. Springer, Berlin, pp 1–15

  • Dou J, Oguchi T, Hayakawa YS, Uchiyama S, Saito H, Paudel U (2014) GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer, Switzerland, pp 419–424

  • Dou J et al (2015a) Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PloS one 10:e0133262. doi:10.1371/journal.pone.0133262

    Article  Google Scholar 

  • Dou J, Chang K-T, Chen S, Yunus AP, Liu J-K, Xia H, Zhu Z (2015b) Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm. Remote Sens 7:4318–4342. doi:10.3390/rs70404318

    Article  Google Scholar 

  • Dou J, Yamagishi H, Pourghasemi HR, Yunus AP, Song X, Xu Y, Zhu Z (2015c) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78:1749–1776. doi:10.1007/s11069-015-1799-2

    Article  Google Scholar 

  • Dou J, Paudel U, Oguchi T, Uchiyama S, Hayakavva YS (2015d) Shallow and deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area, Japan. Terr Atmos Ocean Sci 26:227–239. doi:10.3319/TAO.2014.12.02.07(EOSI)

  • Feizizadeh B, Jankowski P, Blaschke T (2014) A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput Geosci 64:81–95. doi:10.1016/j.cageo.2013.11.009

    Article  Google Scholar 

  • Francis J, Tontisirin N, Anantsuksomsri S, Vink J, Zhong V (2015) Alternative strategies for mapping ACS estimates and error of estimation. In: Hoque N, Potter LB (eds) Emerging techniques in applied demography. Springer, Netherlands, pp 247–273

  • Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139. doi:10.1006/jcss.1997.1504

    Article  Google Scholar 

  • Frye C (2007) About the geometrical interval classification method. https://blogs.esri.com/esri/arcgis/2007/10/18/about-the-geometrical-interval-classification-method/

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27. doi:10.1016/j.enggeo.2004.10.004

    Article  Google Scholar 

  • Guha-Sapir D, Hoyois P, Below R (2014) Annual disaster statistical review 2013: the numbers and trends. CRED, Brussels

    Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Hong H, Pradhan B, Xu C, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 133:266–281. doi:10.1016/j.catena.2015.05.019

    Article  Google Scholar 

  • Hong H, Chen W, Xu C, Youssef AM, Pradhan B, Tien Bui D (2016) Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Int. doi:10.1080/10106049.2015.1130086

    Google Scholar 

  • Hühn J, Hüllermeier E (2009) FURIA: an algorithm for unordered fuzzy rule induction. Data Min Knowl Disc 19:293–319. doi:10.1007/s10618-009-0131-8

    Article  Google Scholar 

  • Ilia I, Tsangaratos P (2015) Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides. doi:10.1007/s10346-015-0576-3

    Google Scholar 

  • Ipe D (1987) Performing the Friedman test and the associated multiple comparison test using PROC GLM. In: Proceedings of the twelfth annual SAS users group international conference, pp 1146–1148

  • Islam MA, Chattoraj SL, Ray CP (2014) Ukhimath landslide 2012 at Uttarakhand, India: causes and consequences. Int J Geom Geosci. doi:10.1007/s11069-013-0728-5

    Google Scholar 

  • Kavzoglu T, Colkesen I (2013) An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping. Int J Remote Sens 34:4224–4241. doi:10.1080/01431161.2013.774099

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439. doi:10.1007/s10346-013-0391-7

    Article  Google Scholar 

  • Kedarisetti KD, Kurgan L, Dick S (2006) Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 348:981–988. doi:10.1016/j.bbrc.2006.07.141

    Article  Google Scholar 

  • Kohavi R, Provost F (1998) Glossary of terms. Mach Learn 30:271–274

    Article  Google Scholar 

  • Koyuncu H, Ceylan R (2013) Artificial neural network based on rotation forest for biomedical pattern classification. In: Telecommunications and Signal Processing (TSP), 2013 36th international conference on. IEEE, pp 581–585

  • Lee S, Ryu J-H, Won J-S, Park H-J (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302. doi:10.1016/S0013-7952(03)00142-X

    Article  Google Scholar 

  • Lin S-W, Lee Z-J, Chen S-C, Tseng T-Y (2008) Parameter determination of support vector machine and feature selection using simulated annealing approach. Appl Soft Comput 8:1505–1512. doi:10.1016/j.asoc.2007.10.012

    Article  Google Scholar 

  • Liu H, Motoda H (2012) Feature selection for knowledge discovery and data mining, vol 454. Springer, US

    Google Scholar 

  • Luo S-T, Cheng B-W (2012) Diagnosing breast masses in digital mammography using feature selection and ensemble methods. J Med Syst 36:569–577. doi:10.1007/s10916-010-9518-8

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931. doi:10.1046/j.1365-2664.2001.00647.x

    Article  Google Scholar 

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123:225–234. doi:10.1016/j.enggeo.2011.09.006

    Article  Google Scholar 

  • Mehta PN, Prakash I (1982) Experience of Seismotectonic Investigations for the evaluation of design earthquake for major engineering structures, W. India. Paper presented at the fourth congress international association of engineering geology, New Delhi

  • Mennis J, Guo D (2009) Spatial data mining and geographic knowledge discovery—an introduction. Comput Environ Urban Syst 33:403–408. doi:10.1016/j.compenvurbsys.2009.11.001

    Article  Google Scholar 

  • Mika (2013) Weathering of igneous rocks. http://www.geomika.com/blog/2013/08/17/weathering-igneous/

  • Mukane P (2014) India’s worst landslides, and why these might not be the last ones. http://www.dnaindia.com/india/report-india-s-worst-landslides-and-why-these-might-not-be-the-last-ones-2006836

  • Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300. doi:10.1016/j.jhydrol.2014.02.053

    Article  Google Scholar 

  • NCEP (2014) Global weather data for SWAT. http://globalweather.tamu.edu

  • Nefeslioglu H, Sezer E, Gokceoglu C, Bozkir A, Duman T (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. doi:10.1155/2010/901095

    Google Scholar 

  • Oh H-J, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37:1264–1276. doi:10.1016/j.cageo.2010.10.012

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343. doi:10.1016/S0013-7952(03)00069-3

    Article  Google Scholar 

  • Onan A (2015) Classifier and feature set ensembles for web page classification. Journal of Information Science. doi:10.1177/0165551515591724

    Google Scholar 

  • Park NW, Chi KH (2008) Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model. Int J Remote Sens 29:247–264. doi:10.1080/01431160701227661

    Article  Google Scholar 

  • Peng Y, Kou G, Wang G, Wu W, Shi Y (2011) Ensemble of software defect predictors: an AHP-based evaluation method. Int J Inf Technol Decis Mak 10:187–206. doi:10.1142/S0219622011004282

    Article  Google Scholar 

  • Peng L, Niu R, Huang B, Wu X, Zhao Y, Ye R (2014) Landslide susceptibility mapping based on rough set theory and support vector machines: a case of the three Gorges area, China. Geomorphology 204:287–301. doi:10.1016/j.geomorph.2013.08.013

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Indra P, Dholakia MB (2015a) A comparison study of predictive ability of support vector machines and naive bayes tree methods in landslide susceptibility assessment at an area between Tehri Garhwal and Pauri Garhwal, Uttarakhand state (India) using GIS. Paper presented at the national symposium on geomatics for digital India and annual conventions of ISG & ISRS, Jaipur (India)

  • Pham BT, Tien Bui D, Indra P, Dholakia MB (2015b) Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS—based statistical approach of frequency ratio method. Int J Eng Res Technol 4:338–344. doi:10.17577/IJERTV4IS110285

    Google Scholar 

  • Pham BT, Tien Bui D, Pourghasemi HR, Indra P, Dholakia MB (2015c) Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol 122:1–19. doi:10.1007/s00704-015-1702-9

    Article  Google Scholar 

  • Pham BT, Nguyen MD, Le AH (2016) Shear resistance and stability study of embankments using different shear resistance parameters of soft soils from laboratory and field tests: a case study of Hai Phong city, Viet Nam. Int J Sci Res Dev 3:330–334

    Google Scholar 

  • Pradhan B (2011) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63:329–349. doi:10.1007/s12665-010-0705-1

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365. doi:10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  • Pradhan B, Abokharima MH, Jebur MN, Tehrany MS (2014) Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat Hazards 73:1019–1042. doi:10.1007/s11069-014-1128-1

    Article  Google Scholar 

  • Randles RH (1988) Wilcoxon signed rank test. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences, vol 9. Wiley, New York, pp 613–616

  • Rodriguez JJ (2007) Rotation forest and random oracles: Two classifier ensemble methods. Paper presented at the Computer-Based Medical Systems, Maribor

    Google Scholar 

  • Rodrïguez JJ, Kuncheva LI (2007) Naïve Bayes ensembles with a random oracle. In: Haindl M, Kittler J, Roli F (eds) Multiple classifier systems. Springer, Berlin, pp 450–458

  • Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation Forest: a new classifier ensemble method. Pattern Anal Mach Intell IEEE Trans 28:1619–1630. doi:10.1109/TPAMI.2006.211

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Mehrotra GS (1995) Landslide hazard zonation: a case study in Garhwal Himalaya, India. Mt Res Dev 15:301–309. doi:10.2307/3673806

    Article  Google Scholar 

  • Sengupta A, Gupta S, Anbarasu K (2010) Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Nat Hazards 52:31–42. doi:10.1007/s11069-009-9352-9

    Article  Google Scholar 

  • Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38:8208–8219. doi:10.1016/j.eswa.2010.12.167

    Article  Google Scholar 

  • Srimani P, Koti MS (2013) Medical diagnosis using ensemble classifiers—a novel machine-learning approach. J Adv Comput 1:9–27. doi:10.7726/jac.2013.1002

    Google Scholar 

  • Thiery Y, Malet J-P, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59. doi:10.1016/j.geomorph.2007.02.020

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012a) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and naive bayes models. Math Probl Eng 2012:1–26. doi:10.1155/2012/974638

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012b) Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 45:199–211. doi:10.1016/j.cageo.2011.10.031

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012c) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96:28–40. doi:10.1016/j.catena.2012.04.001

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Revhaug I, Trung Tran C (2014a) A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam. Remote Sens Appl Environ Res. doi:10.1007/978-3-319-05906-8_6

    Google Scholar 

  • Tien Bui D, Tien Ho C, Revhaug I, Pradhan B, Duy Nguyen B (2014b) Landslide susceptibility mapping along the national road 32 of Vietnam using GIS-based j48 decision tree classifier and its ensembles. In: Buchroithner M, Prechtel N, Burghardt D (eds) Cartography from pole to pole. Springer, Berlin, pp 303–317

  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2015) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. doi:10.1007/s10346-015-0557-6

    Google Scholar 

  • Tsangaratos P, Benardos A (2014) Estimating landslide susceptibility through a artificial neural network classifier. Nat Hazards 74:1489–1516. doi:10.1007/s11069-014-1245-x

    Article  Google Scholar 

  • Tsangaratos P, Ilia I (2015) Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides. doi:10.1007/s10346-015-0565-6

    Google Scholar 

  • Tsangaratos P, Ilia I, Rozos D (2013) Case event system for landslide susceptibility analysis. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 585–593

  • Tsangaratos P, Constantinos L, Dimitrios R, Ioanna I (2015) Landslide susceptibility assessments using the k-nearest neighbor algorithm and expert knowledge. Case study of the basin of Selinounda river, Achaia County, Greece

    Google Scholar 

  • Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F (2010) A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci 36:1101–1114. doi:10.1016/j.cageo.2010.04.004

    Article  Google Scholar 

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410. doi:10.1016/j.geomorph.2005.12.003

    Article  Google Scholar 

  • Van Westen C, Asch T, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:67–184

    Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Paper presented at the UNESCO Press, Paris

    Google Scholar 

  • Webb GI (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40:159–196. doi:10.1023/A:1007659514849

    Article  Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2:37–52. doi:10.1016/0169-7439(87)80084-9

    Article  Google Scholar 

  • Xia J, Du P, He X, Chanussot J (2014) Hyperspectral remote sensing image classification based on rotation forest. Geosci Remote Sens Lett 11:239–243. doi:10.1109/LGRS.2013.2254108

    Article  Google Scholar 

  • Yeon Y-K, Han J-G, Ryu KH (2010) Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol 116:274–283. doi:10.1016/j.enggeo.2010.09.009

    Article  Google Scholar 

  • Yu L, Wang S, Lai KK (2008) Credit risk assessment with a multistage neural network ensemble learning approach. Expert Syst Appl 34:1434–1444. doi:10.1016/j.eswa.2007.01.009

    Article  Google Scholar 

  • Zhang C-X, Zhang J-S (2008) RotBoost: a technique for combining rotation forest and AdaBoost. Pattern Recogn Lett 29:1524–1536. doi:10.1016/j.patrec.2008.03.006

    Article  Google Scholar 

  • Zhang C-X, Zhang J-S (2009) A novel method for constructing ensemble classifiers. Stat Comput 19:317–327. doi:10.1007/s11222-008-9094-7

    Article  Google Scholar 

  • Zhang C-X, Zhang J-S (2010) A variant of rotation forest for constructing ensemble classifiers. Pattern Anal Appl 13:59–77. doi:10.1007/s10044-009-0168-8

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to sincerely thank Director, Bhaskarcharya Institute for Space Applications and Geo-Informatics (BISAG), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India, for providing facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binh Thai Pham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, B.T., Tien Bui, D., Prakash, I. et al. Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat Hazards 83, 97–127 (2016). https://doi.org/10.1007/s11069-016-2304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2304-2

Keywords

Navigation