Skip to main content

Advertisement

Log in

Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This work focuses on the exploitation of very high-resolution (VHR) satellite imagery coupled with multi-criteria analysis (MCA) to produce flood hazard maps. The methodology was tested over a portion of the Yialias river watershed basin (Nicosia, Cyprus). The MCA methodology was performed selecting five flood-conditioning factors: slope, distance to channels, drainage texture, geology and land cover. Among MCA methods, the analytic hierarchy process technique was chosen to derive the weight of each criterion in the computation of the flood hazard index (FHI). The required information layers were obtained by processing a VHR GeoEye-1 image and a digital elevation model. The satellite image was classified using an object-based technique to extract land use/cover data, while GIS geoprocessing of the DEM provided slope, stream network and drainage texture data. Using the FHI, the study area was finally classified into seven hazard categories ranging from very low to very high in order to generate an easily readable map. The hazard seems to be severe, in particular, in some urban areas, where extensive anthropogenic interventions can be observed. This work confirms the benefits of using remote sensing data coupled with MCA approach to provide fast and cost-effective information concerning the hazard assessment, especially when reliable data are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source: modified at Taubenböck et al. 2010

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexakis DD, Hadjimitsis DG, Agapiou A et al (2012) Monitoring urban land cover using satellite remote sensing techniques and field spectroradiometric measurements: case study of “Yialias” catchment area in Cyprus. J Appl Remote Sens 6:1–14. doi:10.1117/1.JRS.6.063603

    Article  Google Scholar 

  • Alexakis DD, Hadjimitsis DG, Agapiou A (2013) Estimating flash flood discharge in a catchment area with the use of hydraulic model and terrestrial laser scanner. In: Helmis CG, Nastos PT (eds) Advances in meteorology, climatology and atmospheric physics. Springer, Heidelberg, pp 9–15

    Chapter  Google Scholar 

  • Altan O, Backhaus R, Boccardo P et al (2013) The value of geoinformation for disaster and risk management (VALID) benefit analysis and stakeholder assessment. Joint Board of Geospatial Information Societies, Copenhagen

    Google Scholar 

  • Asare-Kyei D, Forkuor G, Venus V (2015) Modeling flood hazard zones at the sub-district level with the rational model integrated with GIS and remote sensing approaches. Water 7:3531–3564. doi:10.3390/w7073531

    Article  Google Scholar 

  • Baatz M, Schäpe A (2000) Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte geographische informationsverarbeitung XII AGIT symposium. Salzburg, Germany, pp 12–23

    Google Scholar 

  • Benz UC, Hofmann P, Willhauck G et al (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258. doi:10.1016/j.isprsjprs.2003.10.002

    Article  Google Scholar 

  • Bhaskaran S, Paramananda S, Ramnarayan M (2010) Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl Geogr 30:650–665. doi:10.1016/j.apgeog.2010.01.009

    Article  Google Scholar 

  • Bitelli G, Camassi R, Gusella L, Mognol A (2004) Image change detection on urban area: the earthquake case. Int Arch Photogramm Remote Sens Spat Inf Sci XXXV:692–697

    Google Scholar 

  • Boccardo P (2013) New perspectives in emergency mapping. Eur J Remote Sens 46:571–582. doi:10.5721/EuJRS20134633

    Article  Google Scholar 

  • Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23:429–441. doi:10.1080/01431160010014729

    Article  Google Scholar 

  • Bruzzone L, Carlin L (2006) A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans Geosci Remote Sens 44:2587–2600. doi:10.1109/TGRS.2006.875360

    Article  Google Scholar 

  • Büchele B, Kreibich H, Kron A et al (2006) Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. Nat Hazards Earth Syst Sci 6:485–503. doi:10.5194/nhess-6-485-2006

    Article  Google Scholar 

  • Carver SJ (1991) Integrating multi-criteria evaluation with geographical information systems. Int J Geogr Inf Syst 5:321–339. doi:10.1080/02693799108927858

    Article  Google Scholar 

  • Cervi F (2009) Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology 111:79–87. doi:10.1016/j.geomorph.2008.03.015

    Article  Google Scholar 

  • Cervi F, Berti M, Borgatti L et al (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7:433–444. doi:10.1007/s10346-010-0207-y

    Article  Google Scholar 

  • Chen Y, Barrett D, Liu R et al (2014) A spatial framework for regional-scale flooding risk assessment. In: Ames DP, Quinn NWT, Rizzoli AE (eds) 7th International congress on environmental modelling and software modelling. San Diego, USA

  • Civita M (2005) Idrogeologia applicata e ambientale, CEA-Casa Editrice Ambrosiana

  • Dewan A (2013) Hazards, risk and vulnerability. In: Floods in a megacity: geospatial techniques in assessing hazards, risk and vulnerability. Springer, Netherlands, Dordrecht, pp 35–74. doi:10.1007/978-94-007-5875-9_2

  • Dinesh AC, Joseph Markose V, Jayappa KS (2012) Bearing, azimuth and drainage (bAd) calculator: a new GIS supported tool for quantitative analyses of drainage networks and watershed parameters. Comput Geosci 48:67–72. doi:10.1016/j.cageo.2012.05.016

    Article  Google Scholar 

  • Drobne S, Lisec A (2009) Multi-attribute decision analysis in GIS: weighted linear combination and ordered weighted averaging. Informatica 33:459–474

    Google Scholar 

  • Fernández DS, Lutz MA (2010) Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol 111:90–98. doi:10.1016/j.enggeo.2009.12.006

    Article  Google Scholar 

  • Franci F, Lambertini A, Bitelli G (2014) Integration of different geospatial data in urban areas: a case of study. In: Hadjimitsis DG, Themistocleous K, Michaelides S, Papadavid G (eds) Proceedings of SPIE. pp 92290P1–9. doi:10.1117/12.2066614

  • Franci F, Mandanici E, Bitelli G (2015) Remote sensing analysis for flood risk management in urban sprawl contexts. Geomat Nat Hazards Risk 6:583–599. doi:10.1080/19475705.2014.913695

    Article  Google Scholar 

  • Garschagen M, Mucke P, Schauber A et al (2014) WorldRiskReport 2014. Bündnis Entwicklung Hilft (Alliance Development Works) and United Nations University–Institute for Environment and Human Security (UNU-EHS)

  • Gianinetto M, Villa P, Lechi G (2006) Postflood damage evaluation using landsat TM and ETM+ data integrated with DEM. IEEE Trans Geosci Remote Sens 44:236–243. doi:10.1109/TGRS.2005.859952

    Article  Google Scholar 

  • Gusella L, Adams BJ, Bitelli G (2007) Use of mobile mapping technology for post-disaster damage information collection and integration with remote sensing imagery. In: Proceedings of 5th international symposium on mobile mapping technology

    Google Scholar 

  • Hajam RA, Aadil H, SamiUllah B (2013) Application of morphometric analysis for geo-hydrological studies using geo-spatial technology—a case study of Vishav drainage basin. J Waste Water Treat Anal 04:1–12. doi:10.4172/2157-7587.1000157

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Kandilioti G, Makropoulos C (2011) Preliminary flood risk assessment: the case of Athens. Nat Hazards 61:441–468. doi:10.1007/s11069-011-9930-5

    Article  Google Scholar 

  • Krishnamurthy R, Jayaprakash M (2013) Flood hazard assessment of vamanapuram river basin, Kerala, India: an approach using remote sensing and GIS techniques. Adv Appl Sci Res 4:263–274

    Google Scholar 

  • Kron W (2005) Flood risk=hazard values vulnerability. Water Int 30:58–68. doi:10.1080/02508060508691837

    Article  Google Scholar 

  • Lawal D, Matori A (2012) Detecting flood susceptible areas using GIS-based analytic hierarchy process. Int Conf Future Environ Energy IPCBEE 28:4–8

    Google Scholar 

  • Magesh NS, Jitheshlal KV, Chandrasekar N, Jini KV (2013) Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Appl Water Sci 3:467–477. doi:10.1007/s13201-013-0095-0

    Article  Google Scholar 

  • Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20:703–726. doi:10.1080/13658810600661508

    Article  Google Scholar 

  • Munich RE (2014) NatCatSERVICE loss events worldwide 1980–2013. München, Germany

    Google Scholar 

  • Musungu K, Motala S, Smit J (2012) Using multi-criteria evaluation and GIS for flood risk analysis in informal settlements of cape town: the case of Graveyard Pond. S Afr J Geomat 1:77–91

    Google Scholar 

  • Ouma Y, Tateishi R (2014) Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water 6:1515–1545. doi:10.3390/w6061515

    Article  Google Scholar 

  • Pareta K, Pareta U (2011) Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. Int J Geomatics Geosci 2:248–269

    Article  Google Scholar 

  • Parveen R, Kumar U, Singh VK (2012) Geomorphometric characterization of upper South Koel basin, Jharkhand: a remote sensing and GIS approach. J Water Resour Prot 4:1042–1050

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    Article  Google Scholar 

  • Pradhan B (2010) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spat Hydrol 9(2)

  • Rahmati O, Zeinivand H, Besharat M (2015) Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat Nat Hazards Risk 5705:1–18. doi:10.1080/19475705.2015.1045043

    Google Scholar 

  • Ramaiah SN, Gopalakrishna GS, Vittala SS, Najeeb K (2012) Morphometric analysis of sub-basins in and around Malur Taluk, Kolar district, Karnataka using remote sensing and GIS techniques. Nat Environ Pollut Technol 11:89–94

    Google Scholar 

  • Reddy GPO, Maji AK, Gajbhiye KS (2004) Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—a remote sensing and GIS approach. Int J Appl Earth Obs Geoinf 6:1–16. doi:10.1016/j.jag.2004.06.003

    Article  Google Scholar 

  • Rudraiah M, Govindaiah S, Vittala S (2008) Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna river basin, Gulburga district, Karnataka, India. J Indian Soc Remote Sens 36:351–360

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resources allocation. McGraw, New York

    Google Scholar 

  • Schiewe J (2002) Segmentation of high-resolution remotely sensed data—concepts, applications and problems. Int Arch Photogramm Remote Sens Spat Inf Sci 34:380–385

    Google Scholar 

  • Schumm SA (1956) Evolution of drainage system and slopes in badlands of Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646

    Article  Google Scholar 

  • Shankar S, Dharanirajan K (2014) Drainage morphometry of flood prone rangat watershed, middle Andaman, India—a geospatial approach. Int J Innov Technol Explor Eng 3:15–22

    Google Scholar 

  • Siddayao GP, Valdez SE, Fernandez PL (2014) Analytic hierarchy process (AHP) in spatial modeling for floodplain risk assessment. Int J Mach Learn Comput 4:450–457. doi:10.7763/IJMLC.2014.V4.453

    Article  Google Scholar 

  • Sinha R, Bapalu GV, Singh LK, Rath B (2008) Flood risk analysis in the Kosi river basin, North Bihar using multi-parametric approach of analytical hierarchy process (AHP). J Indian Soc Remote Sens 36:293–307

    Article  Google Scholar 

  • Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668. doi:10.2475/ajs.248.9.655

    Article  Google Scholar 

  • Sreedevi PD, Subrahmanyam K, Ahmed S (2004) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ Geol 47:412–420. doi:10.1007/s00254-004-1166-1

    Article  Google Scholar 

  • Stefanidis S, Stathis D (2013) Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat Hazards 68:569–585. doi:10.1007/s11069-013-0639-5

    Article  Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw Hill Book Company, New York, pp 4–35

    Google Scholar 

  • Taubenböck H, Esch T, Wurm M et al (2010) Object-based feature extraction using high spatial resolution satellite data of urban areas. J Spat Sci 55:117–132. doi:10.1080/14498596.2010.487854

    Article  Google Scholar 

  • United Nations Inter-Agency Secretariat of the International Strategy for Disaster Reduction UN/ISDR (2004) Living with risk: a global review of disaster reduction initiatives. United Nations, New York

  • Van Westen CJ (2013) Remote sensing and GIS for natural hazards assessment and disaster risk management. In: Shroder J, Bishop MP (eds) Treatise on geomorphology. Elsevier, San Diego, pp 259–298

    Chapter  Google Scholar 

  • Wang Y, Li Z, Tang Z, Zeng G (2011) A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour Manag 25:3465–3484. doi:10.1007/s11269-011-9866-2

    Article  Google Scholar 

  • Water Development Department R of C (2014a) Flood hazard maps and flood risk maps—2014. http://www.cyprus.gov.cy/moa/wdd/wdd.nsf/all/410903B9E6BB3FF5C2257D2D003B0D46?opendocument. Accessed 28 Nov 2015

  • Water Development Department R of C (2014b) Flood hazard maps and flood risk maps—2014

  • Weng Q (2001) Modeling urban growth effects on surface runoff with the integration of remote sensing and gis. Environ Manag 28:737–748. doi:10.1007/s002670010258

    Article  Google Scholar 

  • Withanage NS, Dayawansa NDK, De Silva RP (2014) Morphometric analysis of the Gal Oya river basin using spatial data derived from GIS. Trop Agric Res 26:175–188

    Article  Google Scholar 

  • Yahaya S, Ahmad N, Abdalla RF (2010) Multicriteria analysis for flood vulnerable areas in Hadejia-Jama’are river Basin, Nigeria. Eur J Sci Res 42:71–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Franci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franci, F., Bitelli, G., Mandanici, E. et al. Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping. Nat Hazards 83 (Suppl 1), 31–51 (2016). https://doi.org/10.1007/s11069-016-2504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2504-9

Keywords

Navigation