Skip to main content
Log in

Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear planar vibration of a pipe conveying pulsatile fluid subjected to principal parametric resonance in the presence of internal resonance is investigated. The pipe is hinged to two immovable supports at both ends and conveys fluid at a velocity with a harmonically varying component over a constant mean velocity. The geometric cubic nonlinearity in the equation of motion is due to stretching effect of the pipe. The natural frequency of the second mode is approximately three times the natural frequency of the first mode for a range of mean flow velocity, resulting in a three-to-one internal resonance. The analysis is done using the method of multiple scales (MMS) by directly attacking the governing nonlinear integral-partial-differential equations and the associated boundary conditions. The resulting set of first-order ordinary differential equations governing the modulation of amplitude and phase is analyzed numerically for principal parametric resonance of first mode. Stability, bifurcation, and response behavior of the pipe are investigated. The results show new zones of instability due to the presence of internal resonance. A wide array of dynamical behavior is observed, illustrating the influence of internal resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paidoussis, M.P.: Flow–induced instabilities of cylindrical structures. Appl. Mech. Rev. 40, 163–175 (1987)

    Google Scholar 

  2. Paidoussis, M.P., Li, G.X.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7, 137–204 (1993)

    Article  Google Scholar 

  3. Paidoussis, M.P.: Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, London (1998)

    Google Scholar 

  4. Chen, S.S.: Dynamic stability of a tube conveying fluid. ASCE J. Eng. Mech. 97, 1469–1485 (1971)

    Google Scholar 

  5. Paidoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33, 267–294 (1974)

    Article  Google Scholar 

  6. Paidoussis, M.P., Sundararajan, C.: Parametric and combination resonances of a pipe conveying pulsating fluid. ASME J. Appl. Mech. 42, 780–784 (1975)

    MATH  Google Scholar 

  7. Ginsberg, J.: The dynamic stability of a pipe conveying a pulsatile flow. Int. J. Eng. Sci. 11, 1013–1024 (1973)

    Article  MATH  Google Scholar 

  8. Ariaratnam, S.T., Namachchivaya, N.S.: Dynamic stability of pipes conveying pulsating fluid. J. Sound Vib. 107, 215–230 (1986)

    Article  Google Scholar 

  9. Namachchivaya, N.S.: Nonlinear dynamics of supported pipe conveying pulsating fluid. 1. Subharmonic resonance. Int. J. Non-Linear Mech. 24 (3), 185–196 (1989)

    Article  Google Scholar 

  10. Namachchivaya, N.S., Tien, W.M.: Nonlinear dynamics of supported pipe conveying pulsating fluid. 2. Combination resonance. Int. J. Non-Linear Mech. 24 (3), 197–208 (1989)

    Article  Google Scholar 

  11. Jayaraman, K., Narayanan, S.: Chaotic oscillations in pipes conveying pulsating fluid. Nonlinear Dyn. 10, 333–357 (1996)

    Article  Google Scholar 

  12. Chang, C.O., Chen, K.C.: Dynamics and stability of pipes conveying fluid. ASME J. Press. Vessel Tech. 116, 57–66 (1994)

    Article  Google Scholar 

  13. Yoshizawa, M., Nao, H., Hasegawa, E., Tsujioka, Y.: Lateral vibration of a flexible pipe conveying fluid with pulsating flow. Bull. JSME 29, 2243–2250 (1986)

    Google Scholar 

  14. Thurman, A.L., Mote Jr., C.D.: Non-linear oscillation of a cylinder containing flowing fluid. ASME J. Eng. Ind. 91, 1147–1155 (1969)

    Google Scholar 

  15. Holmes, P.J.: Bifurcations to divergence and flutter in flow-induced oscillations: a finite-dimensional analysis. J. Sound Vib. 53 (4), 471–503 (1977)

    Article  MATH  Google Scholar 

  16. Holmes, P.J., Marsden, J.E.: Bifurcation to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis. Automatica 14, 367–384 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rousselet, J., Hermann, G.: Flutter of articulated pipes at finite amplitude. J. Appl. Mech. 44, 154–158 (1977)

    MATH  Google Scholar 

  18. Bajaj, A.K., Sethna, P.R., Lundgren, T.S.: Hopf bifurcation phenomena in tubes carrying fluid. SIAM J. Appl. Math. 39, 213–230 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bajaj, A.K., Sethna, P.R.: Bifurcations in three dimensional motions of articulated tubes. Part 2. Non-linear analysis. J. Appl. Mech. 49, 612–618 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bajaj, A.K., Sethna, P.R.: Flow induced bifurcations to three-dimensional oscillatory motions in continuous tubes. SIAM J. Appl. Math. 44, 270–286 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Oz, H.R., Boyaci, H.: Transverse vibrations of tensioned pipes conveying fluid with time-dependent velocity. J. Sound Vib. 236 (2), 259–276 (2000)

    Article  Google Scholar 

  22. Oz, H.R.: Nonlinear vibrations and stability analysis of tensioned pipes conveying fluid with variable velocity. Int. J. Non-Linear Mech. 36 (1), 1031–1039 (2001)

    Article  Google Scholar 

  23. Oz, H.R., Pakdemirli, M., Boyaci, H.: Nonlinear vibrations and stability of an axially moving beam with time-dependent velocity. Int. J. Non-Linear Mech. 36 (1), 107–115 (2001)

    Article  Google Scholar 

  24. Nayfeh, A.H., Nayfeh, J.F., Mook, D.T.: On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 3, 145–162 (1992)

    Article  Google Scholar 

  25. Pakdemirli, M.: A comparison of two perturbation methods for vibration of systems with quadratic and cubic nonlinearities. Mech. Res. Commun. 21, 203–208 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pakdemirli, M., Boyaci, H.: Comparison of direct-perturbation methods with discretization–perturbation methods for nonlinear vibrations. J. Sound Vib. 186, 837–845 (1995)

    Article  MATH  Google Scholar 

  27. Tezak, E.G., Mook, D.T., Nayfeh, A.H.: Nonlinear analysis of the lateral response of columns to periodic loads. J. Mech. Des. 100, 651–659 (1978)

    Google Scholar 

  28. Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20, 131–158 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, 175–201 (1989)

    Article  MathSciNet  Google Scholar 

  30. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (1998)

    Google Scholar 

  31. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley-Interscience, New York (2004)

    MATH  Google Scholar 

  32. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  33. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  34. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical Computational and Experimental Methods. Wiley-Interscience, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Panda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, L.N., Kar, R.C. Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn 49, 9–30 (2007). https://doi.org/10.1007/s11071-006-9100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9100-6

Keywords

Navigation