Skip to main content
Log in

Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This research studies the effects of axial preload on nonlinear dynamic characteristics of a flexible rotor supported by angular contact ball bearings. A dynamic model of ball bearings is improved for modeling a five-degree-of-freedom rotor bearing system. The predicted results are in good agreement with prior experimental data, thus validating the proposed model. With or without considering unbalanced forces, the Floquet theory is employed to investigate the bifurcation and stability of system periodic solution. With the aid of Poincarè maps and frequency response, the unstable motion of system is analyzed in detail. Results show that the effects of axial preload applied to ball bearings on system dynamic characteristics are significant. The unstable periodic solution of a balanced rotor bearing system can be avoided when the applied axial preload is sufficient. The bifurcation margins of an unbalanced rotor bearing system enhance markedly as the axial preload increases and relates to system resonance speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Clearance, m

D :

Diameter, m

[D]:

System damping matrix

F :

Force, N

{F}:

Force vector, N or Nm

[G]:

System gyroscopic matrix

K :

Load-deflection constant for point contact, N/m1.5

[K]:

System stiffness matrix

l :

Actual distance between ball center and race center of curvature, m

L :

Nominal distance between ball center and race center of curvature, m

m :

Mass, kg

M :

Moment, Nm

[M]:

System mass matrix

N :

Number of rolling elements

Q :

Contact force, N

{Q}:

Contact force vector of rolling element, N

r :

Race radius of curvature, m

t :

Time, s

[T]:

Transformation matrix {U}→{u}

{u}:

Displacement vector of inner race center of curvature={u r u z u φ }, m or rad

{U}:

Displacement vector of bearing center={x y z θ x θ y }T, m or rad

α :

Contact angle, rad

δ :

Contact deformation or deflection, m

φ :

Angular location of rolling element, rad

ω :

Angular velocity angular velocity, shaft angular velocity, rpm

b :

Rolling element

c :

Cage

i :

Inner race

j :

Rolling element index

o :

Outer

p :

Pitch

r,z,φ :

r,z,φ-axes

x,y,z :

x,y,z-axes

vc :

Varying compliance

0:

Nominal

References

  1. Bai, C.Q.: Research on nonlinear dynamic performance and stability of liquid-rocket-engine turbopump rotor system. Dissertation, Xi’an Jiaotong University (2006)

  2. Perret, H.: Elastische Spielschwingungen Konstant Belasteter Wälzlager. Werkstatt Betr. 83, 354–358 (1950)

    Google Scholar 

  3. Meldau, E.: Die Bewegung der Achse von Wälzlagern bei Geringen Drehzahlen. Werkstatt Betr. 84, 308–313 (1951)

    Google Scholar 

  4. Jones, A.B.: A general theory of elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. ASME J Basic Eng. 82, 309–320 (1960)

    Google Scholar 

  5. Gutafsson, O.G., Tallian, T., et al.: Research report on study of the vibration characteristics of bearings. Report: AL631023, Reg: 585 14:4223 SKF Ind., Inc (1963)

  6. Gupta, P.L.: Dynamics of rolling element bearings, parts I to IV. ASME J. Lubr. Technol. 101, 293–326 (1979)

    Google Scholar 

  7. Saito, S.: Calculation of non-linear unbalance response of horizontal Jeffcott rotors supported by ball bearings with radial clearances. ASME J. Vib. Acoust. Stress Reliab. Des. 107, 416–420 (1985)

    Google Scholar 

  8. de Mul, J.M., Vree, J.M., Maas, D.A.: Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction—part I: general theory and application to ball bearings. ASME J. Tribol. 111, 142–148 (1989)

    Article  Google Scholar 

  9. Liew, A., Feng, N., Hahn, E.J.: Transient rotordynamic modeling of rolling element bearing systems. ASME J. Eng. Gas Turbines Power 124, 984–991 (2002)

    Article  Google Scholar 

  10. Jang, G.H., Jeong, S.W.: Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. ASME J. Tribol. 124, 82–90 (2002)

    Article  Google Scholar 

  11. Jang, G.H., Jeong, S.W.: Analysis of a ball bearing with waviness considering the centrifugal force and gyroscopic moment of the ball. ASME J. Tribol. 125, 487–498 (2003)

    Article  Google Scholar 

  12. Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238, 723–756 (2000)

    Article  Google Scholar 

  13. Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238, 757–779 (2000)

    Article  Google Scholar 

  14. Harsha, S.P., Sandeep, K., Prakash, R.: The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings. Int. J. Mech. Sci. 45, 725–740 (2003)

    Article  Google Scholar 

  15. Harsha, S.P., Kankar, P.K.: Stability analysis of a rotor bearing system due to surface waviness and number of balls. Int. J. Mech. Sci. 46, 1057–1081 (2004)

    Article  MATH  Google Scholar 

  16. Gad, E.H., Fukata, S., Tamura, H.: Computer simulation of rotor axial and radial vibrations due to ball bearings. Mem. Fac. Eng. Kyushu Univ. 44(2), 169–189 (1984)

    Google Scholar 

  17. Aktüuk, N., Uneeb, M., Gohar, R.: The effects of number of balls and preload on vibrations associated with ball bearings. ASME J. Tribol. 119, 747–753 (1997)

    Article  Google Scholar 

  18. Bai, C.Q., Xu, Q.Y.: Dynamic model of ball bearing with internal clearance and waviness. J. Sound Vib. 294, 23–48 (2006)

    Article  Google Scholar 

  19. Alfares, M.A., Elsharkawy, A.A.: Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system. J. Mater. Process. Technol. 136, 48–59 (2003)

    Article  Google Scholar 

  20. Harris, T.A.: Rolling Bearing Analysis, 2nd edn. Wiley, New York (1984)

    Google Scholar 

  21. Brewe, D.E., Hamrock, B.J.: Simplified solution for elliptical-contact deformation between two elastic solids. J. Lubr. Technol. 99, 485–487 (1977)

    Google Scholar 

  22. Hamrock, B.J., Dowson, D.: Ball Bearing Lubrication—the Elastohydrodynamics of Elliptical Contacts. Wiley, New York (1981)

    Google Scholar 

  23. Liu, Y.Z., Chen, L.Q.: Nonlinear Vibrations. Higher Education Press, Beijing (2001) (in Chinese)

    Google Scholar 

  24. Frulla, G.: Rigid rotor dynamic stability using Floquet theory. Eur. J. Mech., A: Solids 19(1), 139–150 (2000)

    Article  MATH  Google Scholar 

  25. Qiu, Y., Zhang, J.H.: Cause of the vibration associated with ball bearings. Report 75-52-05-09/10, Department of Engineering Mechanics, Xi’an Jiaotong University (1990) (in Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, C., Zhang, H. & Xu, Q. Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system. Nonlinear Dyn 53, 173–190 (2008). https://doi.org/10.1007/s11071-007-9306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9306-2

Keywords

Navigation