Skip to main content
Log in

A fractional calculus interpretation of the fractional volatility model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on criteria of mathematical simplicity and consistency with empirical market data, a model with volatility driven by fractional noise has been constructed which provides a fairly accurate mathematical parametrization of the data. Here, the model is formulated in terms of a fractional integration of stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vilela Mendes, R., Lima, R., Araújo, T.: A process-reconstruction analysis of market fluctuations. Int. J. Theor. Appl. Finance 5, 797–821 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Vilela Mendes, R., Araújo, T., Louçã, F.: Reconstructing an economic space from a market metric. Phys. A 323, 635–650 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Araújo, T., Louçã, F.: The geometry of crashes. A measure of the dynamics of stock market crises. Quant. Finance 7, 63–74 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Vilela Mendes, R., Oliveira, M.J.: A data-reconstructed fractional volatility model. Economics (2008). http://www.economics-ejournal.org/economics/discussionpapers/2008-22. arXiv:math/0602013

  5. Vilela Mendes, R.: The fractional volatility model: An agent-based interpretation. Phys. A 387, 3987–3994 (2008)

    MathSciNet  Google Scholar 

  6. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284, 376–384 (2000)

    MathSciNet  Google Scholar 

  8. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: The waiting-time distribution. Phys. A 287, 468–481 (2000)

    Google Scholar 

  9. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)

    MATH  Google Scholar 

  10. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance III: the diffusion limit. In: Kohlmann, M., Tang, S. (eds.) Mathematical Finance, pp. 171–180. Birkhäuser, Basel (2001)

    Google Scholar 

  11. Scalas, E., Gorenflo, R., Mainardi, F., Meerschaert, M.M.: Speculative option valuation and the fractional diffusion equation. In: Sabatier, J., Tenreiro Machado, J. (eds.) Proceedings of the IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux (2004)

  12. Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Phys. A 370, 114–118 (2006)

    MathSciNet  Google Scholar 

  13. Montroll, E.W., Weiss, G.H.: Random walks on lattices II. J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  Google Scholar 

  14. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: Solutions and applications. Chaos 7, 753–764 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (1995)

    MATH  Google Scholar 

  16. Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  17. Pipiras, V., Taqqu, M.S.: Fractional calculus and its connections to fractional Brownian motion. In: Doukhan, P., Oppenheim, G., Taqqu, M.S. (eds.) Theory and Applications of Long-Range Dependence, pp. 165–201. Birkhäuser, Basel (2003)

    Google Scholar 

  18. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon Breach, London (1993)

    MATH  Google Scholar 

  19. Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White Noise—An Infinite Dimensional Calculus. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  20. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)

    Article  Google Scholar 

  21. Collet, P.: Sampling almost periodic functions with random probes of finite density. Proc. R. Soc. Lond. A 452, 2263–2277 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Machado, J.A.T.: A probabilistic interpretation of fractional-order differentiation. Fract. Calc. Appl. Anal. 6, 73–80 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Stanislavsky, A.A.: Probabilistic interpretation of the integral of fractional order. Theor. Math. Phys. 138, 418–431 (2004)

    Article  Google Scholar 

  24. Grigolini, P., Rocco, A., West, B.: Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E 59, 2603–2613 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vilela Mendes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilela Mendes, R. A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn 55, 395–399 (2009). https://doi.org/10.1007/s11071-008-9372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9372-0

Keywords

Navigation