Skip to main content
Log in

Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Using the method of multiple scales, an extensive frequency response and subharmonic resonance analysis of the equations of motion governing the nonlinear flexural vibrations of piezoelectrically actuated microcantilevers is performed. Such comprehensive understanding of the nonlinear response and subharmonics analysis of these microcantilevers is, indeed, justified by the applications of piezoelectrically actuated microcantilevers that are increasingly becoming popular in many science and engineering areas including scanning force microscopy, biosensors, and microactuators. Along this line, the method of multiple scales is used to derive the 2× and 3× subharmonic resonances appearing in nonlinear flexural vibrations of a piezoelectrically actuated microcantilever. An experimental examination is performed in order to verify the analytical results. The analytical and experimental results yield the same system response for the fundamental frequency. In addition, the experimental results demonstrate the presence of subharmonic resonances that are supported by numerical simulations of the equations of motion. The experimental mode shapes of these subharmonic frequencies are also measured and compared with fundamental frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, W.C., Lee, H.P., Lim, S.P.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31, 243–256 (2003)

    Article  MATH  Google Scholar 

  2. Das, S., Sreeram, P.A., Raychaudhuri, A.K., Sai, T.P., Brar, L.K.: Non-contact dynamic mode atomic force microscope: Effects of nonlinear atomic forces. In: Proceedings of 2006: IEEE Conference on Emerging Technologies—Nanoelectronics, pp. 458–462 (2006)

  3. Dufour, I., Heinrich, S.M., Josse, F.: Theoretical analysis of strong-axis bending mode vibrations for resonant microcantilever bio-chemical sensors in gas or liquid phase. J. Microelectromech. Syst. 16(1), 44–49 (2007)

    Article  Google Scholar 

  4. Scherer, V., Arnold, W., Bhushan, B.: Lateral force microscopy using acoustic friction force microscopy. Surf. Interface Anal. 27(5–6), 578–587 (1999)

    Article  Google Scholar 

  5. Hosaka, H., Itao, K.: Vibration of microcantilever array induced by airflow force. ASME J. Vib. Acoust. 124, 26–32 (2002)

    Article  Google Scholar 

  6. Salehi-Khojin, A., Bashash, S., Jalili, N.: Modeling and experimental vibration analysis of nanomechanical cantilever active probes. J. Micromech. Microeng. 18(8), 085008 (2008)

    Article  Google Scholar 

  7. Dareing, D.W., Thundat, T., Jeon, S., Nicholson, M.: Modal analysis of microcantilever sensors with environmental damping. J. Appl. Phys. 97, 084902 (2005)

    Article  Google Scholar 

  8. Yuya, P.A., Wen, Y., Turner, J.A., Dzenis, Y.A., Li, Z.: Determination of Young’s modulus of individual electrospun nanofibers by microcantilever vibration method. Appl. Phys. Lett. 90, 111909 (2007)

    Article  Google Scholar 

  9. Spletzer, M., Raman, A., Sumali, H., Sullivan, J.P.: Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl. Phys. Lett. 92, 114102 (2008)

    Article  Google Scholar 

  10. Hwang, K.S., Lee, S., Eom, K., Lee, J.H., Lee, Y., Park, J.H., Yoon, D.S., Kim, T.S.: Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase. Biosens. Bioelectron. 23, 459–465 (2007)

    Article  Google Scholar 

  11. Nayfeh, A.H., Chin, C., Nayfeh, S.A.: Non-linear normal modes of a cantilever beam. ASME J. Vib. Acoust. 117, 477–481 (1995)

    Article  Google Scholar 

  12. Nayfeh, A.H., Nayfeh, S.A.: Non-linear normal modes of a continuous systems with quadratic non-linearities. ASME J. Vib. Acoust. 117, 199–207 (1994)

    Article  Google Scholar 

  13. Mahmoodi, S.N., Khadem, S.E., Rezaee, M.: Analysis of nonlinear mode shapes and natural frequencies of continuous damped systems. J. Sound Vib. 275, 283–298 (2004)

    Article  Google Scholar 

  14. Arafat, H.N., Nayfeh, A.H., Chin, C.: Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 15, 31–61 (1998)

    Article  MATH  Google Scholar 

  15. Dadfarnia, M., Jalili, N., Xian, B., Dawson, D.M.: A Lyapunov-based piezoelectric controller for flexible Cartesian robot manipulators. ASME J. Dyn. Syst. Meas. Control 126, 347–358 (2004)

    Article  Google Scholar 

  16. Dadfarnia, M., Jalili, N., Liu, Z., Dawson, D.M.: An observer-based piezoelectric control of flexible Cartesian robot arms: Theory and experiment. Control Eng. Pract. 12, 1041–1053 (2004)

    Article  Google Scholar 

  17. Narita, F., Shindo, Y., Mikami, M.: Analytical and experimental study of nonlinear bending response and domain wall motion in piezoelectric laminated actuators under AC electric fields. Acta Mater. 53, 4523–4529 (2005)

    Article  Google Scholar 

  18. Mahmoodi, S.N., Jalili, N.: Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. Int. J. Non-Linear Mech. 42, 577–587 (2007)

    Article  Google Scholar 

  19. Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling, nonlinear dynamics and identification of a piezoelectrically-actuated microcantilever sensor. ASME/IEEE Trans. Mechatron. 13(1), 59–65 (2008)

    Google Scholar 

  20. Sharos, L.B., Raman, A., Crittenden, S., Reifenberger, R.: Enhanced mass sensing using torsional and lateral resonances in microcantilevers. Appl. Phys. Lett. 84(23), 4638–4640 (2004)

    Article  Google Scholar 

  21. Ren, Q., Zhao, Y.P.: Influence of surface stress on frequency of microcantilever-based biosensors. Microsyst. Technol. 10, 307–314 (2004)

    Article  Google Scholar 

  22. Vyas, A., Bajaj, A.K., Raman, A., Proulis, D.: Nonlinear micromechanical filters based on internal resonance phenomenon. In: Proceedings of Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems—Digest of Papers, pp. 35–38 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nima Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoodi, S.N., Jalili, N. & Ahmadian, M. Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers. Nonlinear Dyn 59, 397–409 (2010). https://doi.org/10.1007/s11071-009-9546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9546-4

Keywords

Navigation