Skip to main content
Log in

Comparative research on semi-active control strategies for magneto-rheological suspension

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the comparison results of a study to identify an appropriate semi-active control algorithm for a MR suspension system from a variety of semi-active control algorithms for use with MR dampers. Five representative control algorithms are considered including the skyhook controller, the hybrid controller, the LQG controller, the sliding mode controller and the fuzzy logic controller. To compare the control performances of the five control algorithms, a quarter car model with a MR damper is adopted as the baseline model for our analysis. After deriving the governing motion equations of the proposed dynamic model, five controllers are developed. Then each control policy is applied to the baseline model equipped with a MR damper. The performances of each control algorithm under various road conditions are compared along with the equivalent passive model in both time and frequency domains through the numerical simulation. Subsequently, a road test is performed to validate the actual control performance. The results show that the performance of a MR suspension system is highly dependent on the choice of algorithm employed, and the sliding mode control strategy exhibits an excellent integrated performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hassan, S.A., Sharp, R.S.: The relative performance capability of passive, active and semi-active car suspension systems. SAE technical paper series 864901 (1986)

  2. Lou, Z., Ervin, R.D., Filisko, F.E.: A preliminary parametric study of electrorheological dampers. Trans. ASME J. Fluids Eng. 116(3), 570–576 (1994)

    Article  Google Scholar 

  3. Sassi, S., Cherif, K., Mezghani, L., Thomas, M., Kotrane, A.: An innovative magnetorheological damper for automotive suspension: from design to experimental characterization. Smart Mater. Struct. 14, 811–822 (2005)

    Article  Google Scholar 

  4. Lam, A.H.-F., Liao, W.-H.: Semi-active control of automotive suspension systems with magneto-rheological dampers. Int. J. Veh. Des. 33(1/2/3), 50–75 (2003)

    Article  Google Scholar 

  5. Nguyen, Q.H., Choi, S.B.: Optimal design of MR shock absorber and application to vehicle suspension. Smart Mater. Struct. 18(3), 035012 (2009)

    Article  Google Scholar 

  6. Lee, H.S., Choi, S.B.: Control and response characteristics of a magneto-rheological fluid damper for passenger vehicles. J. Intell. Mater. Syst. Struct. 11(1), 80–87 (2000)

    Google Scholar 

  7. Choi, S.B., Lee, H.S., Park, Y.P.: H-infinity control performance of a full-vehicle suspension featuring magnetorheological dampers. Veh. Syst. Dyn. 38(5), 341–360 (2002)

    Article  Google Scholar 

  8. Batterbee, D.C., Sims, N.D.: Hardware-in-the-loop simulation of magnetorheological dampers for vehicle suspension systems. Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng. 221(2), 265–278 (2007)

    Article  Google Scholar 

  9. Crosby, M.J., Harwood, R.A., Karnopp, D.: Vibration control using semi-active force generators. Lord Library of Technical Articles LL-7004 (1973)

  10. Ahmadian, M., Simon, D.E.: An analytical and experimental evaluation of magneto rheological suspensions for heavy trucks. Veh. Syst. Dyn. 37, 38–49 (2002)

    Article  Google Scholar 

  11. Ahmadian, M., Vahdati, N.: Transient dynamics of semiactive suspensions with hybrid control. J. Intell. Mater. Syst. Struct. 17(2), 145–153 (2006)

    Article  Google Scholar 

  12. Wang, E.R., Ma, X.Q., Rakheja, S., Su, C.Y.: Semi-active control of vehicle vibration with MR-dampers. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, December (2003)

  13. Guo, D.L., Hu, H.Y., Yi, J.Q.: Neural network control for a semi-active vehicle suspension with a magnetorheological damper. J. Vib. Control 10(3), 461–471 (2004)

    Article  MATH  Google Scholar 

  14. Yagiz, N., Sakman, L.E.: Robust sliding mode control of a full vehicle without suspension gap loss. J. Vib. Control 11(11), 1357–1374 (2005)

    Article  Google Scholar 

  15. Yu, M., Liao, C.R., Chen, W.M., Huang, S.L.: Study on MR semi-active suspension system and its road testing. J. Intell. Mater. Syst. Struct. 17(8–9), 801–806 (2006)

    Article  Google Scholar 

  16. Eslaminasab, N., Biglarbegian, M., Melek, W.W., Golnaraghi, M.F.: A neural network based fuzzy control approach to improve ride comfort and road handling of heavy vehicles using semi-active dampers. Int. J. Heavy Veh. Syst. 14(2), 135–157 (2007)

    Article  Google Scholar 

  17. Choi, S.B., Lee, S.-K., Park, Y.P.: A hysteresis model for the field-dependent damping force of a magnetorheological damper. J. Sound Vib. 245(2), 375–383 (2001)

    Article  Google Scholar 

  18. Sung, K.G., Han, Y.M., Lim, K.H., Choi, S.B.: Discrete-time fuzzy sliding mode control for a vehicle suspension system featuring an electrorheological fluid damper. Smart Mater. Struct. 16(3), 798–808 (2007)

    Article  Google Scholar 

  19. Fang, X., Chen, W., Wu, L., Wang, Q., Fan, D., Li, Z.: Fuzzy control technology and the application to vehicle semi-active suspension. Chinese J. Mech. Eng. 35(3), 98–100 (1999)

    Google Scholar 

  20. Dong, X.M., Liao, C.R., Chen, W.M., Zhang, H.H., Huang, S.L.: Adaptive fuzzy neural network control for transient dynamics of magneto-rheological suspension with time-delay. In: Adv. Neural Netw. ISNN 2006, Pt. 2, Proc. Lecture Notes in Computer Science, vol. 3972, pp. 1046–1051. Springer, Berlin (2006)

    Chapter  Google Scholar 

  21. Yang, J.W., Li, J., Du, Y.P.: Adaptive fuzzy control of lateral semi-active suspension for high-speed railway vehicle. In: Comput. Intell., Pt. 2, Proc. Lecture Notes in Computer Science, vol. 4114, pp. 1104–1115. Springer, Berlin (2006)

    Google Scholar 

  22. Ying, Z.G., Zhu, W.Q., Soong, T.T.: A stochastic optimal semi-active control strategy for ER/MR damper. J. Sound Vib. 259(1), 45–62 (2003)

    Article  MathSciNet  Google Scholar 

  23. Sims, N.D., Peel, D.J., Stanway, R., Johnson, A.R., Bullough, W.A.: The electrorheological long-stroke damper: a new modeling technique with experimental validation. J. Sound Vib. 229(2), 207–227 (2000)

    Article  Google Scholar 

  24. Spencer, B.F., Dyke, S.J., Sain, M.K., Carlson, J.D.: Phenomenological model for magnetorheological dampers. J. Eng. Mech. 123(3), 230–238 (1997)

    Article  Google Scholar 

  25. Chang, C.C., Roschke, P.: Neural network modeling of a magnetorheological damper. J. Intell. Mater. Syst. Struct. 9(9), 755–764 (1998)

    Article  Google Scholar 

  26. Ahmadian, M.: A hybrid semi-active control for secondary suspension applications. In: ASME International Congress and Exposition, November 16–21, Dallas, TX (1997)

  27. Yokoyama, M., Hendrick, J.K., Toyama, S.: A model following sliding mode controller for semi-active suspension systems with MR dampers. In: Proceedings of the American Control Conference Arlington, VA, June 25–27, pp. 2652–2657 (2001)

  28. Zhao, H., Lu, S.: A vehicle’s time domain model with road input on four wheels. Automot. Eng. 21(2), 112–117 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-min Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Xm., Yu, M., Liao, Cr. et al. Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dyn 59, 433–453 (2010). https://doi.org/10.1007/s11071-009-9550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9550-8

Keywords

Navigation